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ABSTRACT

Infrared sensor satellites are used to monitor the conditions in the earth's upper

atmosphere. In these systems, the electronic links connecting the cryogenically cooled

infrared detectors to the significantly warmer amplification electronics act as thermal

bridges and, consequently, the mission lifetimes of the satellites are limited due to

cryogenic evaporation. High-temperature superconductor (HTS) materials have been

proposed by researchers at the National Aeronautics and Space Administration Langley's

Research Center (NASA-LaRC) as an alternative to the currently used manganin wires

for electrical connection. The potential for using HTS films as thermal bridges has

provided the motivation for the design and the analysis of a spaceflight experiment to

evaluate the performance of this superconductive technology in the space environmenL

The initial efforts were focused on the preliminary design of the experimental system

which allows for the quantitative comparison of superconductive leads with manganin

leads, and on the thermal conduction modeling of the proposed system (see previous

progress report - Scott and Lee, 1994). Most of the HTS materials were indicated to be

potential replacements for the manganin wires. In the continuation of this multi-year

research, the objectives of this study were to evaluate the sources of heat transfer on the

thermal bridges that have been neglected in the preliminary conductive model and then

to develop a methodology for the estimation of the thermal conductivities of the HTS

thermal bridges in space.

The Joule heating created by the electrical current through the manganin wires

was incorporated as a volumetric heat source into the manganin conductive model. The

radiative heat source on the HTS thermal bridges was determined by performing a

separate radiant interchange analysis within a high-Tc superconductor housing area. Both

heat sources indicated no significant contribution on the cryogenic heat load, which

validates the results obtained in the preliminary conduction model.

A methodology was presented for the estimation of the thermal conductivities of

the individual HTS thermal bridge materials and the effective thermal conductivities of

the composite HTS thermal bridges as functions of temperature. This methodology

included a sensitivity analysis and the demonstration of the estimation procedure using
simulated data with added random errors. The thermal conductivities could not be

estimated as functions of temperature; thus the effective thermal conductivities of the HTS

thermal bridges were analyzed as constants.
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CHAPTER 1

Introduction

Infrared (IR) sensors are crucial instruments for monitoring the concentration of

chemical radicals present in the earth's upper atmosphere. Their use in sensor satellites

allows for the evaluation of both the present condition and future changes in the

atmosphere. In these systems, the IR detectors are connected to the data acquisition and

storage electronics by the means of an electrical link, as seen in Figure 1.1. The IR

detectors require liquid helium cryogenic refrigeration (at - 4 K), whereas the electronics

must be kept at a considerably warmer temperature (at - 80 K). This technology is

therefore limited by the heat conducted through the electrical leads, which contributes to

the rate of cryogen evaporation. Because the amount of cryogen available characterizes

the mission lifetime of the satellites, the minimization of the nonparasitic heat load on the

cryogen system by the electrical instrumentation acting as a thermal bridge is of critical

interest. An efficient solution results in the use of an electrically conducting and

thermally isolating link between the IR detectors and the electronics. In order to meet

these conflicting requirements, high-temperature superconducting (HTS) materials have
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been proposed by researchers at the National Aeronautics and Space Administration's

Langley Research Center (NASA-LaRC) as an alternative to the currently used manganin

wires for electrical connection. Indeed, HTS materials have been shown in the cryogenic

region to exhibit a lower thermal conductivity than manganin with a sufficiently high

electrical conductivity for detector applications, where typical currents are on the order

of 1 _tA. An electronic link with such characteristics is therefore expected to improve the

thermal isolation of IR detectors and to reduce the rate of cryogen evaporation, or in other

words, to increase the lifetime of the satellites. Based on these theoretical considerations,

NASA-LaRC has considered the incorporation of this technology of a HTS link in IR

remote sensing platforms such as SAFIRE (Spectroscopy of the Atmosphere using Far

Infrared Emission) and SIRTF (Space Infrared Telescope Facility).

Preliminary investigations of replacing manganin technology with HTS films

technology have indicated a substantial reduction in thermal loss, translating into

approximately 10-15 percent enhancement in mission lifetime (Wise et al., 1992). It is

the potential for using HTS materials as thermal bridges in infrared sensor satellite

systems that has provided the motivation for the design and the analysis of an experiment

to evaluate the performance of this superconductive technology in the space environment.

The anticipated space launch of this experiment is projected for 1998. The initial efforts

in this multi-year research were focused on the preliminary design of the experimental

system and on the thermal conduction modeling of the proposed system (Lee, 1994). In

addition, preliminary structural analysis have been performed (Spencer, 1994). The

experimental design completed by Lee allows for the quantitative comparison of the heat
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load on the cryogen between different types of thermal bridges. Lee concentrated the

thermal analysis of the bridges on the conduction due to the temperature gradient along

the links, assuming that all other sources of heat transfer (radiation, electrical conduction)

are negligible. The results of this conductive analysis indicate that the majority of the

HTS materials displays heat loads on the cryogenic system under 15 percent compared

to the 20 percent heat load by the currently used manganin wires. These results, based

on the assumption that conduction is the dominant mode of heat transfer, show that most

of the I-ITS materials are potential replacements for the manganin wires as electrical

connections in infrared sensor satellite systems.

1.1 Goals and Objectives

The continuation of this on-going research focuses on the analysis of the space

experimental design for High-T c superconductive thermal bridges completed by Lee

(1994).

are:

1)

and

2)

The overall objectives of this study can be divided into two major areas which

the evaluation of the sources of heat transfer on the thermal bridges that have been

assumed negligible in the conductive analysis performed by Lee,

the development of a methodology for the estimation of the thermal conductivities

of the HTS thermal bridges in the space environment.

The emphasis in the first area of interest is on determining whether or not the
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sourcesof heattransferneglectedin the preliminaryconductivemathematicalmodelof

the thermal bridgesaresignificant sourcesof heatload on the cryogen. Thesesources

includetheelectricalheatsourcegeneratedbytheelectronicsignalsfrom theIR detectors,

and the radiativeexchangewithin the thermalbridge housingareaof the experimental

design. Theelectricalheatsourcewasevaluatedthroughtheimplementationof theJoule

heatingterminto theconductivemathematicalmodelof thethermalbridges. Thespecific

objectivewas to verify that the Jouleheatingterm affectsneither the heatloads on the

cryogen,nor the temperaturedistributionsalong thethermalbridges. In the assessment

of the radiativeheat sourceon the HTS thermalbridges,a radiant interchangeanalysis

within a HTS housingareawasconductedusingtheMonte-Carlotechnique. The focal

point in this analysiswasto comparetheradiativeheatloadsonthe HTS thermalbridges

with therespectiveconductiveheatloadsgeneratedon the cryogen.

The secondareaof interestfocuseson developinga methodologyfor the estimation

of the thermal conductivities of the HTS thermal bridges in space. The overall

significance of the capability to determine these thermal properties in the space

environmentis that it will enablethequantitativeassessmentof theperformanceof HTS

materialsaselectronicleadsin infraredsensorsatellitesystems.This capabilitywill also

allow theevaluationof variousspaceeffects,thusprovidingafuturemeansof monitoring

possible changesin the material due to the spaceenvironment. Both the thermal

conductivitiesof the individual HTS thermal bridge materials and the effective thermal

conductivities of the composite HTS thermal bridges were sought in this investigation.

The temperature dependence in both cases was modeled with the use of polynomials in
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temperature. The first specific objective was to conduct a sensitivity analysis on both

thermal conductivity models and to determine which thermal conductivity parameter could

be estimated for each model. The estimation procedure used in this study is a

modification of the Gauss linearization method and is based on the minimization of a

least-squares function with respect to the unknown parameters. This method also requires

temperature measurements; simulation of experimental data was therefore necessitated as

no actual temperature measurements are yet available for this research. The second

specific objective was then to demonstrate the estimation procedure using simulated data

with added random errors.
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CHAPTER 2

Literature Review

This chapter provides a review of the literature for both the analysis of the radiative

exchange within a space experimental design for high-temperature superconductive

thermal bridges and the estimation of the thermal conductivities of these HTS thermal

bridges.

The first section gives an introduction to superconductivity and discusses the possible

applications for high-temperature superconductors. The following section summarizes the

present state of knowledge pertaining to radiative exchange between surfaces and

emphasizes the Monte-Carlo method, which was used to assess the radiative heat load on

the HTS thermal bridges. The final section describes a minimization procedure based on

the Gauss method which was used to develop a methodology for the estimation of the

thermal conductivities of the HTS thermal bridges.



2.1 Superconductivity

After a brief history of superconductivity, this section presents the basic physical

characteristics of the two types of superconductors. The aim is to show that

superconductors are not only perfect conductors, but also diamagnetic materials. The

section concludes with an overview of possible applications for high-temperature

superconductors.

2.1.1 Brief History

Superconductivity was discovered in 1911 by Kamedingh Onnes whose experiments

showed that mercury becomes superconductive when cooled to liquid helium temperatures

(Doss, 1989). Between 1911 and 1986 many more pure metals, alloys and doped

semiconductors were found to have this property. But prior to 1986, the maximum

observed transition temperature remained only at 23.21K for Nb3Ge (Figure 2.1.1). The

transition temperature, Tc, is defined as the temperature below which the superconductor

is in the well-known "superconducting state" (Allen, 1969). Then in 1986 a new group

of materials, known as high-temperature superconductors, was discovered by Bednorz and

Miiller (1986). In a very short period of time, the maximum critical temperatures were

increased from 23K to 35K and then to 90K. Indeed, there are now materials that

superconduct at 110-125K (Hunt, 1989), and the latest results obtained by LaguSs et al.

(1993) suggest possibilities of superconductivity at 250K.
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Figure 2.1.1. Maximum Transition Temperature of Superconductors vs.

Year of Discovery (Doss, 1989).

2.1.2 The Two Types of Superconductors

Superconductors are generally divided into two types. Most pure elemental

superconductors are Type I, whereas most alloy conventional superconductors and all

HTS are Type II.

2.1.2.1 Type I Superconductors

In March 1987 at the famous meeting of the American Physical Society which

became known as the "Woodstock of Physics", Brian Maple, professor of physics at the

University of California, San Diego, said: "the fascination of superconductivity is

associated with the words perfect, infinite, and zero" (Vidali, 1993). This summarizes
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very well the properties of superconductors. Superconductivity actually possesses two

outstanding features occufing suddenly at the critical temperature To. These features are

the zero electrical resistance, or in other words the infinite conductance, and the expulsion

of magnetic flux, also called diamagnetism. The second property, the diamagnetism,

which is less apparent than the first but also important, was studied by Meissner and

Oschsenfeld in 1933. The Meissner effect is the proof that superconductivity is more than

perfect conductivity. Both superconductive properties have operating regions. Electric

currents can be propagated without resistance if the current density is less than the critical

current density Jc of the superconducting material. In the same logic, ff the magnetic

field applied is greater than the critical magnetic field, He, of the superconductor (Figure

2.1.2), its superconductivity is destroyed (Hunt, 1969). Consequently, each

superconductor is associated with a specific critical temperature, magnetic field and

current density (Bardeen, 1968).

o _r o _-

Non'_"11

;Superconducting _:"_

T,
Type I

__( Normll

To
Type "IT

Figure 2.1.2. Phase Diagrams of Type I and Type II Superconductors

(Rose-Innes and Rhoderick, 1969).
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In Type I superconductors, a relationship between the critical current density and the

critical magnetic field exits. This relationship can be derived from the equations

describing the electrodynamics of the supercurrent, which are known as the London

equations (Rose-Innes and Rhoderick, 1969).

But how does superconductivity occur in these materials? The theory developed by

Bardeen, Cooper and Schrieffer (1957) (the BCS theory) gives a successful explanation

for Type I materials. It is based on a coherent pairing of electrons which takes place with

the help of the ions from the solid, under appropriate circumstances. The stronger the

coupling, the higher the critical temperature. It should be noted that the critical

temperatures predicted by the BCS theory cannot exceed 40 K.

As certain superconductors, especially alloys and impure metals, were noticed to

behave differently than Type I superconductors, Abrikosov pointed out in 1957 that the

apparent anomalous properties were the inherent features of another class of

superconductors, known as Type 1I (Rose-Innes and Rhoderick, 1969).

2.1.2.2 Type H Superconductors

Type II materials behave like Type I materials for magnetic fields below a critical

level He1, as shown by Figure 2.1.2. However, when the magnetic field is increased

above He1, Type II superconductors allow the flux to penetrate, and the material is in the

"mixed-state" until the magnetic field reaches the upper critical level Hc_ (Rose-Innes and

Rhoderick, 1969). In the "mixed state" (Hc1<H<Hc2), normal (nonsuperconducting)

regions are microscopically mingled with superconducting regions and the material

11



remains superconducting. Since the superconductor's energy is not used in expelling the

flux, the critical current density is generally much higher in Type II superconductors than

in Type I.

Type II superconductors with a critical temperature above 25 K belong by convention

to the "high-To" category and are called High-Temperature Superconductors (Doss, 1989).

With its 40 K limit on the critical temperature, the BCS theory is unable to explain the

critical temperatures obtained for some HTS Type II materials. As a result, some

alternative theories, which are also based on electron pairs, have been proposed but so far

no comprehensive theory has emerged.

The latest discovered HTS materials (YBCO, BSCCO and T1BaCaCuO) are ceramic

oxides and have the brittle mechanical characteristics of ceramics. In addition, the

superconductivity properties are highly anisotropic. The I-ITS material characteristics,

especially the properties of the superconductors YBCO and BSCCO, and the HTS

material structure have been described in detail by Lee (1994). Lee also discussed the

processing of HTS films on substrate materials, the requirements of the different

techniques, and possible applications for HTS materials. Indeed, it is important to

distinguish between bulk HTS materials and their thin-film counterparts: HTS thin films

generally have much better critical current densities (Jc can achieve 105-106 A/m 2) than

for the same material in bulk form, although some other properties such as the critical

temperature Tc are sometimes worse.
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2.1.3 Applications of High-Temperature Superconductors

Prior to the discovery of the HTS materials, the zero electrical resistivity of

superconductors cooled to liquid helium temperatures had been exploited for various

electronic and large-scale applications. The Josephson effect discovered in 1962 led to

the development of Josephson junction switches and Superconducting Quantum

Interference Devices (SQUIDs). The routinely high-field applications are restricted to the

use of superconducting magnets in particle accelerators in the study of high energy

physics and to Magnetic Resonance Imaging (MRI) for medical diagnostic purposes

(Geballe and Hulm, 1988). The major advantage of using HTS materials is their high

critical temperatures which allows for cooling with liquid nitrogen rather than liquid

helium, expensive and inconvenient to use. The greatest savings could be obtained in the

field of microelectronics where the refrigeration cost is a major part of the system cost

(Geballe and Hulm, 1988). Other possibilities for HTS materials are starting to be

realized by industry. Lee (1994) discussed the near-term and longer-term projects where

HTS materials are being strongly considered. More work, however, needs to be done in

understanding and enhancing the restrictive processing requirements of HTS materials.

Space application of superconductivity is another excellent demonstration where the

utilization of superconductors can vastly improve performances or perform tasks that were

not previously feasible (Geballe and Hulm, 1988). The use of HTS ceramics for sensor

leads for several sensing systems in millimeter and infrared ranges could diminish both

the electrical losses and the thermal noise limitations. Consequently reduced cryogenic

requirements, high frequency operations and lower power local oscillators could be
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ensured(Krishen andIgnatiev,1988).

High-temperaturesuperconductors offer attractive advantages for a wide variety of

both small- and large-scale applications. But it may take a long time before technologies

using these new materials are ready to enter the market. However, if the critical

temperature is increased to room temperature, as suggested by the latest experiments

(LaguEs et al., 1993), there would be an immediate opening for many incredible

applications.

2.2 Numerical Methods Used for the Evaluation of Radiative Exchange within
Enclosures

The determination of the radiative heat load on the HTS thermal bridges will enable

us to conclude whether or not radiation affects the heat load on the cryogen. An alternate

approach for determining this radiative heat load is to evaluate the radiative exchange

within the housing chamber for the thermal bridges.

For many years, the analysis of radiation exchange between surface elements within

enclosures has been conducted in various ways. In many practical engineering situations,

the diffuse-gray enclosure approximation is made and the geometric configuration factor

is computed. This approach is reasonable if the assumptions are well approximated or

the directional spectral radiative properties are not available, and if high accuracy is not

needed. When the enclosure consists of both diffuse and purely specular surfaces, the

configuration factor is extended to the exchange factor (Eckert and Sparrow, 1961).

These factors are based on geometry, and as the enclosure geometry becomes complex
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they can become very difficult to evaluate. In addition, their use in the formulation of

the interchange problems require the inversion of an often large matrix. Considering the

limited amount of directional information these factors contain, the use of these tedious

numerical techniques might not be worth while.

To account for mixed specular and diffuse reflection models for surfaces, the

reflectivity, 19, can be assumed to be the sum of two components and be expressed as,

p = pd+p_, (2.2.1)

where pd is the diffuse component of the reflectivity and p' is the specular component of

the reflectivity. This assumed behavior of the reflectivity is taken into account in the

computation of the radiation distribution factors D 0 (Mahan and Eskin, 1984). This factor

represents the fraction of diffusely emitted radiation from surface i absorbed by surface

j due to direct radiation and to all directional diffuse and specular reflections. From its

definition, one can see that the distribution factor is not strictly a geometrical factor and

that it contains directional information. An efficient way for the distribution factors to

be computed is through the Monte-Carlo method.

2.2.1 The Monte-Carlo Method

The Monte-Carlo method is a statistical numerical method used to compute the

distribution factors. It models the radiative exchange process by following the life of

discrete energy bundles from emission to absorption using the probabilistic interpretation

of the surface properties. This method is very useful to treat complex geometries. It can

also solve for directional and spectral-surface property variations. As a statistical method
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it hasthe disadvantage of requiting the emission of a large number of energy bundles to

converge and thus excessive computing time may be necessary. But once the distribution

factors have been obtained, if the temperatures are known for all surfaces and wavelength

intervals, calculation of the net heat flux (W/m 2) through surface i is then relatively

simple using the following equation,

K n

qi,,,t = _[_ _ _/keb(ax,,Tj)(Sij-D_jk), (2.2.2)
k=l j=l

where _ik is the emissivity of surface i in wavelength interval k, es(Ax,,Tj)is the emissive

power of surface j in wavelength interval k, D_k is the distribution factor from surface i

to surface j in wavelength interval k, and 8_ is the Kronecker delta function. This

formulation succeeds in eliminating the matrix inversion required when using the

configuration or exchange factor. As the spatial and spectral resolutions increase, the

solution becomes exact.

The Monte-Carlo method was applied in this study to evaluate the radiative heat

source on the high-temperature superconductive thermal bridges. This technique was

preferred because of its ability to treat complex geometries and to account for mixed

specular and diffuse reflection models.

2.3 Minimization Methods Used for the Estimation of Thermal Properties

A key strategy to assess the feasibility of HTS-substrate combinations as electronic

leads in infrared sensor satellite systems, is to estimate the thermal conductivities of the
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samplesin thespaceenvironment.An effectivetechnique for the simultaneous estimation

of thermal properties consists of the minimization of an objective function. The Gauss

Linearization method based on the least squares function is an important method in this

field.

2.3.1 The Gauss Linearizalion Method

The Gauss Linearization method involves the minimization of the sum of squares

function S with respect to the unknown parameters. The sum of squares function given

by Beck and Arnold (1977) is

S = [Y-/T_)] r I¥[Y-TL/_)] , (2.3.1)

where Y is a vector of measured temperatures, T is a vector of calculated temperatures

as a function of/3, the true parameter vector, and W is a weighting matrix. The thermal

properties are found using an iterative process which minimizes the sum of the square of

the difference between the measured and the calculated temperatures by updating the

thermal property values. First, the derivative of S with respect to/3 is set equal to zero.

Then, using a Taylor series expansion, this expression is solved for b, the estimated

parameter vector for/3. This process provides a linear approximation to the nonlinear

model. It requires that the first derivatives of T are continuous in/3 and that the higher

derivatives are bounded. Beck and Arnold (1977) describe the Gauss method as being

simple and practical for seeking minima which are reasonably well defined provided the

initial estimates are in the neighborhood of the minimum. But in the case of poor initial

guesses for the parameters or near-linear dependence between the parameter sensitivity
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coefficients,oscillations and non-convergence can occur in the iterative process. In order

to improve the Gauss estimation method, Box and Kanemasu (1972) suggested a small

correction in the direction of the parameter variations. Bard (1970) modified the Box-

Kanemasu method by including a check to ensure the continuous decrease of S, the sum

of squares function, from one iteration to another.

one-half if the function does not decrease.

The modified Box-Kanemasu method has

This is done by reducing the step by

been applied in a wide range of

engineering areas. Scott and Saad (1993) employed the modified Box-Kanemasu method

for the estimation of kinetic parameters associated with the curing of epoxy resin. They

showed that inaccurate parameter estimations and in some cases non-convergence of the

estimation process could result from linear dependence between the sensitivity

coefficients. The use of the modified Box-Kanemasu method in cryosurgical applications

by Scott and Scott (1993) allowed for the determination of the optimal time for cryogenic

tumor treatment. This work also concluded that, when available, prior information should

be included in the estimation process as it significantly improves accuracy.

Iterative least squares schemes similar to the modified Box-Kanemasu method exist

and some are discussed by Beck and Arnold (1977). Jurkowsky et al. (1992) studied an

optimization procedure enabling the simultaneous identification of thermal conductivity

and thermal contact resistance without using interior sensors. They concluded that small

sensitivity coefficients or the unbalance of the sensitivity matrix resulted in the instability

of their estimation procedure.

The careful examination of the sensitivity coefficients therefore appears to be an
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imperative step prior to the implementationof parameterestimation methodologies.

Indeed, the sum of squaresfunction S has no unique minimum if the sensitivity

coefficients are correlated. Furthermore, the magnitudes of the dimensionless sensitivity

coefficients are by convention limiting factors in the possibility of estimating parameters

because they indicate the influence of each parameter in the mathematical model. In the

analysis of sublimation-dehydration within a porous medium, Scott (1994) conducted a

sensitivity study which examined the importance of the material properties on the

solution. Scott was able to conclude for which parameter temperature provides the most

information. The sensitivity study can also be applied for the design of optimal

experiments. In this case the maximum magnitude values of the sensitivity coefficients

are interpreted as criteria for the determination of optimal experimental parameters.

Taktak et al. (1991) and Moncman (1994) employed this technique to design optimal

experiments for the estimation of thermal properties of composite materials. In a one-

dimensional experiment, they both determined the optimal heating time of the applied heat

flux, the optimal temperature sensor location and the optimal experimental time.

Moncman also studied these parameters for a two-dimensional experimental design.

The procedure used in this research to estimate the thermal conductivities of the

HTS-substrate combinations is a modification of the Gauss Linearization method

previously discussed. This method was chosen due to its capability to simultaneously

estimate parameters and its accuracy in the final estimates.
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CHAPTER 3

Heat Transfer Analysis of the Thermal Bridges

This chapter is devoted to the thermal analysis of different types of electrical leads

in infrared sensor satellite systems. These electrical leads act as thermal bridges because

they are submitted to a temperature gradient between the data acquisition unit at a

temperature of 80 K and the cryogenic infrared detector at a temperature of 4 K. The

analysis of the heat transfer in the thermal bridges was realized assuming spaceflight

conditions.

The first section provides a general description of the preliminary experimental

design completed by Lee (1994). This design is characterized by identical chambers with

only the thermal isolator material being different in each chamber; all sources of thermal

transfer other than conduction are minimized. The different HTS-substrate combinations

are presented at the end of the first section. The following section focuses on the

determination of the conductive heat load supplied to the cryogen by each thermal bridge.

As an analytical exact solution could not be found for such a complex conduction

problem, a numerical scheme was used. The finite difference program ORTHO3D was
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utilized to formulate the conductivemathematicalmodels. In the final section, the

assessmentof the importanceof the radiativeheat load on the cryogenicheat load due

to the useof HTS thermalbridgesis presented.TheMonte-Carlotechniquewasusedto

perform the analysisof the radiativeexchangewithin thethermalbridgehousingarea.

3.1 Lee's Experimental Design

The experimental design completed by Lee (1994), shown in Figure 3.1.1, is

comprised of three major components, which are the liquid helium dewar, the cryostat and

the thermal bridge housing area. The cross-sectional view of the thermal bridge housing

area (Figure 3.1.2) shows the three identical vacuum chambers containing three different

types of electronic leads. Two chambers will house high-temperature superconductive

leads and the third will contain manganin wires. The vacuum environment of 6.8x10 6

atm is produced to minimize convection. A steady heat flux, controlled by a heater, is

applied at one end of the thermal bridges so that the temperature reaches approximately

80 K at this end (Figure 3.1.3). The other end is attached to a copper block in direct

contact with a cryogenically cooled disk at an approximate temperature of 4 K. This

temperature is maintained by a temperature controller. The heat loss due to each type of

thermal isolator can be calculated by a simple conduction analysis along the copper

blocks which contain the cold ends of the thermal isolators and the cold tip disk. The

temperature at both ends of the thermal bridges are measured by temperature sensors.

The constraints of the spaceflight mission were taken into account. This preliminary
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design respects the size, weight, power and budget limitations required. It will eventually

need to meet the spaceflight launch conditions. The HTS thermal bridges must actually

be supported to withstand the vibrational loads of 12.6 g rms associated with the launch.

Following Spencer's work (1994), Ron Nottingham, an undergraduate student in the

Mechanical Engineering Department at Virginia Tech, is presently studying several

support mechanisms. These are designed to strengthen the HTS thermal bridges during

launch while the bridges are expected to vibrate, but to have no contact with them in

space, where they are presumed to be stable. As a result, in space, the heat transfer

through the supports should not affect the heat transfer through the HTS thermal bridges.

Five possible HTS-substrate combinations are evaluated in this research. These are

YBa2Cu307_x lines on Yttria-Stabilized Zirconia (YSZ, 10wt%, cubic); BiSrCaCu2Ox lines

on YSZ; YBa2Cu3Ov_x lines on Fused Silica (FSI, with 3000 A buffer layer of zirconia);

BiSrCaCu2Ox lines on FSI (3000 A buffer layer of zirconia); and YBa2Cu3OT.x lines on

211 Green Phase (GREEN). Only two of these five combinations will be selected for the

final experimental design.

The detector leads must be able to transmit typical signal of 1 _A or less. Each

thermal bridge contains a minimum of sixty detector leads. In the case of manganin,

these are 40 AWG wires encased in a thin layer of Kapton for insulation (about 0.0254

mm thickness). In the case of HTS materials, there are sixty HTS leads printed onto a

152.4 mm long by 9.144 mm wide by 0.1524 mm thick substrate, as shown by Figure

3.1.4. Each HTS lead is 0.0508 mm wide by 0.0508 mm thick. The spacing between the

leads is 0.1016 mm. The details of the HTS dimensions are provided in Figure 3.1.5.
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3.2 Determination of the Conductive Heat Load on the Cryogen

The goal of the following analysis is to determine the conductive heat load supplied

to the cryogen by each thermal bridge. This goal enables the quantitative comparison of

the performance of HTS materials and manganin wires for use as electronic leads to

cryogenic sensors in the space environment. The control-volume-based f'mite difference

program ORTHO3D (Creel and Nelson, 1994) was utilized to describe the conduction in

the thermal bridges. Each thermal bridge was considered separately in the conductive

mathematical models. The models were formulated assuming that all other heat transfer

(radiation, convection) are negligible.

The first subsection discusses the main characteristics of the control-volume-based

finite difference method and introduces the finite difference program ORTHO3D. The

second subsection details the geometric modeling for both the HTS and manganin thermal

bridges. In the next subsection, the theoretical development for the incorporation of the

electrical current in the manganin model is presented. The final subsection focuses on

the convergence of the conductive mathematical models and provides the results, which

are the temperature distributions along the thermal bridges and the heat load on the

cryogen for the HTS, and manganin models.

3.2.1 Control-Volume-Based Finite Difference Program ORTHO3D

A practical alternative procedure for solving multidimensional situations is to use a

numerical method. The control-volume-based finite difference method is one of the more
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popular numerical methods used in heat transfer problems. This method involves the

discretization of the domain of interest into small volumes. Each control volume is

represented by a grid point in its center. In the control-volume method, the properties

attached to a grid point are assumed to prevail over the entire corresponding control

volume. This assumption allows for the approximation of the differential equation

governing the heat transfer problem to a set of discretized algebraic equations. This set

of equations can then be solved, providing an estimate of the exact solution. In the limit

of spatial refinement, the numerical solution becomes exact.

The program ORTHO3D, used in this research to analyze the conduction in the

thermal bridges, is a control-volume, f'mite difference heat transfer program. It has been

developed by Dr. D.J. Nelson, professor of Mechanical Engineering at Virginia Tech.

ORTHO3D is based on an extension of the program CONDUCT created by Patankar

(1991). The modifications performed on the original program allow for the study of

three-dimensional materials with orthotropic properties. ORTHO3D also has the

capability to add a contact resistance between layers in the z direction. Creel and Nelson

(1994) used ORTHO3D to approximate a layer by a contact resistance in the thermal

model of a three dimensional microelectronic package. It should be noted that the pre-

packaged finite difference modeling programs PATRAN (1990) and SINDA (1985) were

initially used in this research to study the conductive heat transfer in the thermal bridges.

However, the limitation of the computer program SINDA, specifically its inability to

converge to the correct temperature distribution, created the need to use ORTHO3D. This

finite difference program performed efficiently in this investigation.
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The structure of the original program CONDUCT, which is comprised of two main

parts, has been maintained in ORTHO3D. While the invariant part, which solves the set

of algebraic discretization equations, is common to all applications, the adapt part is a

problem-dependent part and has to be modified by the user for each application. This

original structure makes the program very easy to use. The program ORTHO3D and its

capabilities have been described in detail by Creel (1994).

The program ORTHO3D has the ability to solve a three-dimensional conductive heat

transfer occurring within a domain which can be defined by rectangular coordinates. The

governing equation of such problem is

aT a.. aT. a.. aT. a.. aT. St,,,, (3.2.1)pc - + + +
& _-[K=_-J '_ l_-_-" J _--[K.,.--_- J ,

where p is the density, c is the specific heat, k_, ky and k z are the conductivities in the x,

y and z directions, respectively, T is the temperature and Sg,, is the volumetric heat source

in the domain. In this study, ORTHO3D is employed to analyze the heat conduction

through the thermal bridges, assuming that all other heat transfer (radiation, conduction)

are negligible. This conduction problem is steady state and the materials constituting the

thermal bridges are assumed to be isotropic, that is k_--ky=kz=k i for each material i.

Therefore, the differential equation that needs to be solved is

a aT a aT a aT

--_[k,--_]+-_Ik,--_l+-_[k,--_]+S _ = 0. (3.2.2)

This is a nonlinear problem because k depends on temperature. The volumetric heat

source, Sg,,, is detailed later in Section 3.2.3.
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Before developingthe boundaryconditions that are applied in Eq. (3.2.2), the

geometricmodelsof the thermalbridgesneedto bedefined.

3.2.2 Thermal Bridge Geometric Modeling

The control volume design was performed using the scheme called Practice B

(Patankar, 1991). First, the domain was divided into control volumes, and then grid

points were placed at the center of each control volume. This practice ensures the

coincidence of the location of discontinuity in conductivity or heat generation with a

control volume face. The grid locations in the x, y and z directions are denoted by i, j

and k, respectively. The node numbering scheme ranges from 1 to L1, M1 and N1 for

the x, y and z directions, respectively.

3.2.2.1 HTS Thermal Bridges

The geometric modeling of the HTS thermal bridges with ORTHO3D is similar to the

one realized by Lee (1994) with the software PATRAN. The individual leads of the HTS

material are lumped as a single lead on the substrate (Figure 3.2.1). Due to the symmetry

in the y direction, only one-half of the HTS thermal bridges need to be modeled. Because

of the non-regularity of the geometric model, a nominal rectangular domain is first drawn

around it, as shown by Figure 3.2.1. Then this nominal domain is discretized into active

and inactive zones, which are divided into control volumes. The inactive zones lie

outside the real domain and no solution is sought there. The thermal conductivity is

hence set to zero in the inactive region.
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Figure 3.2.1. HTS Thermal Bridge Geometric Modeling Using ORTHO3D.
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The nominal domain is discretized into one zone in the x direction, two zones in the

y direction and two zones, or three, depending on the presence of a buffer layer between

the substrate and the HTS leads, in the z direction. Figure 3.2.1 provides the details of

face L1 (i=L1, x=-Lt_,,_b,ug e) and displays the zone discretization in the y and z directions.

This figure also supplies a schematic of the boundary conditions. Face I1 (i=1, x=0) has

a f'Lxed temperature of 4 K and face L1 is submitted to a constant heat flux so that the

temperature on this face reaches 80 K. This constant heat flux was calculated for each

HTS-substrate combination using a one-dimensional parallel flow assumption (Lee, 1994).

The four other surfaces of the nominal rectangular domain are insulated.

3.2.2.2 Manganin Thermal Bridge

The manganin wires were also modeled as a single wire (Figure 3.2.2). However, in

order to use the program ORTHO3D developed in rectangular coordinates, this single

wire was modeled to be rectangular, with same cross-sectional area. Taking advantage

of the symmetry, only a fourth of the manganin thermal bridge was studied. As for the

HTS thermal bridges, the nominal domain is discretized into zones. One zone is set in

the x direction and two zones are specified in the y and z directions. The details of face

L1 are shown by Figure 3.2.2. The boundary conditions are analogous to those for the

HTS thermal bridges.
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3.2.3 Incorporation of the Electrical Current in the Manganin Wires

The IR detectors transmit typical signals of 1 ttA or less. The electrical power

(Pa_t = Ret_t/2) of the electrical current, L flowing through the thermal bridge which has

an electrical resistance Re,a, generates heat along its length. This electrical heat source

could be a significant source of heat load on the cryogen. Because the HTS materials do

not have electrical resistance at cryogenic temperatures, only the manganin wires can be

affected by the electronic signals. Therefore, the electrical conduction was implemented

into the conductive mathematical model for the manganin wire in order to obtain the

effective conductive heat transfer through the wire. The incorporation of the electrical

conduction in the governing heat conduction equation, Eq. (3.2.2), is realized via the term

Sgen, which represents the volumetric heat generated in the domain.

The electronic signals create in the manganin wires a volumetric heat source, Sse,,,

defined as the electrical power dissipated ON) over the volume (m3), and is expressed as

(3.2.3)

where Ret,, is the electrical resistance of manganin, I is the electrical current (1 laA) and

A_ and L are the cross-sectional area and length of the manganin link, respectively.

Introducing the current density J and the electrical resistivity ,o,_,a reduces the Joule

heating term to

Sgen : j2pdec.t . (3.2.4)

The current density through the manganin wires, J, can be calculated because the
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electrical current, L and the cross-sectional area, Ac, are both known. The electrical

resistivity of manganin, ,o,_ec,, is a function of temperature. Its variation needs to be

determined for the temperature range of the thermal bridge.

The literature (Standard Handbook for Electrical Engineers, 13 th ed., 1989) provides

the electrical resistivity, Petect,2o, and the temperature coefficient per °C, aa,a.2o, for the

manganin material at 20°C. Over moderate ranges of temperatures, such as 100°C, the

change of resistivity is usually proportional to the change of temperature, that is

: • (3.2.5)

where P,u_tr2 and Peu_trl are the electrical resistivities at temperatures T2 and/'1 (usually

T1=20°C), respectively, and a,u_trl is the temperature coefficient at temperature T s.

However, over wide ranges of temperatures, the linear relationship of this formula is not

applicable. Consequently, knowing P, uct2o cannot be used to determine the electrical

resistivity for temperatures less than -80°C (193 K).

Let us look now at the general behavior of the electrical resistivity of manganin

alloys. This electrical behavior has been shown to decrease with temperature for

temperatures lower than 20°C (Metal Handbook, 9thed., 1980). Therefore a conservative

value for the resistivity at a temperature range of [4-80 K] could be the resistivity at -

80°C (193 K). This resistivity of manganin at -80°C, P_,_-s0, is calculated using Pe_t2o and

aeon,.2o in Eq. (3.2.5), with T_=20°C and T2=-80°C. We obtain

,o,t,,.so = 4.814x10 7 f_-m .
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The volumetric electrical source for the manganin thermal bridge, S_e_, can then be

determined using Eq. (3.2.4),

Sgen = 5-29x10 "6W/m 3 -

This Joule heating is assumed constant within the manganin wires, that is Sg, n is a

constant at each grid point. Recall that for the HTS thermal bridges, Sg, n equals zero.

It is important to note that, a priori, the resistance self-heating through the manganin

wires should affect neither the heat load on the cryogen, nor the temperature distribution

along the thermal bridge. Indeed, with a volume of 4.6x10 s m 3 for the 152.4 mm long

manganin thermal bridge, the Joule heating term is about 10 13 W for an applied current

of 1 laA. The comparison of this generated heat source with the heat input of 10 .3 W

(Lee, 1994) at the warm end of this 152.4 mm long manganin thermal bridge makes the

Joule heating term insignificant. This result was verified numerically using ORTHO3D.

3.2.4 Results and Discussion

The Fortran subroutines HTS.FOR (Appendix A) and MANG.FOR (Appendix B)

were written as the adapt subroutines of ORTHO3D to solve this steady-state conductive

heat transfer problem for the five combinations of HTS thermal bridges and for the

manganin thermal bridge. In these subroutines, the physical parameters of the models

such as the geometry, the boundary conditions, the conductivities and the volumetric heat

source term for the manganin wires, are defined. The results are the temperature

distributions within the thermal bridges and the conductive heat load on the cryogen by

each thermal bridge.
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The convergence of the conductive mathematical models is discussed in the fhst

subsection. The complete results, obtained using ORTHO3D without the consideration

of the Joule heating in the manganin wires, have actually already been given and largely

discussed by Scott and Lee (1994). Therefore, only the results which have been shown

to minimize the cryogen evaporation, are provided with brief comments in the final

subsection.

3.2.4.1 Convergence of the Conductive Mathematical Models

Several parameters were studied in the convergence analysis of the models. These

are the grid size, the initial temperature distribution along the thermal bridges, the energy

balance of the domain and the number of iterations used by the solver.

The grid refinement of the domain examined has to be performed cautiously. Indeed,

the aim is to obtain a good numerical accuracy with the fewest grid points possible. This

allows for the saving of computational resources. The grid size should be homogeneous

in the three directions; that is the length, width and thickness of each control volume

should be in the same range of dimensions. In this research, the thermal bridges are

characterized by a large aspect ratio, which is def'med by the ratio of the length of the

thermal bridge over its thickness. For instance, the value of the aspect ratio of the 152.4

mm long HTS thermal bridges is one thousand when calculated with respect to the

thickness of the substrate. This large value shows the importance of the resolution in the

x direction in order to obtain a reasonable aspect ratio for each control volume and hence

an homogeneous grid size. The grid was tested by running the HTS models with a
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different resolution in the x direction and with the same resolution in the y and z

directions (7 x 5 or 6 when the models contain a buffer layer). It was found that one

hundred control volumes in the x direction provided trade-off between the numerical

accuracy obtained and the computing time required for this grid size. The numerical

accuracy was considered reasonable when both the temperature at the warm end of the

thermal bridges reached 80 K (+ 0.2 K) and the temperature gradient in the z direction

was less than 0.2 K. The aspect ratio of the control volumes in the substrate becomes 30

for one hundred control volumes in the x direction.

The grid was refined to 100 × 7 x 5 (or 6 in the case of a buffer layer between the

substrate and the superconductor) for the HTS thermal bridges; for the manganin thermal

bridge, the grid size used is 100 x 4 x 4.

Another prominent parameter in the convergence of the models is the selection of

accurate initial guessed temperatures. In this research, this selection is important not only

because of the nonlinearity of the conduction problem but also because of the extremely

low thermal conductivity values of the materials at cryogenic temperatures (Lee, 1994).

To provide the most accurate initial temperatures along the thermal bridges, the

temperature distribution of the combination YBCO/FSI, previously obtained using the

softwares PATRAN and SINDA (Lee, 1994), was implemented in each model as a

function of the length of the thermal bridge. This initial temperature distribution provided

a good point of departure for the calculation by the solver of the material thermal

conductivities at each grid point. This also had the advantage of improving the
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convergencespeed of the models.

It is strongly advised by the user in the adapt subroutine (Nelson, 1994) to implement

a convergence criterion specific to the problem studied. The convergence criterion chosen

in this work is based on the change in the conductive heat load transferred out of the

domain. When the change in this heat output becomes negligible (less than 105), the

solution is considered to be converged. At this point, the computation of a second

criterion based on an overall energy balance could be appreciated as a double-check of

An overall energy balance, E_, is defined by

Q,-Qo.+Q..,

convergence.

(3.2.6)

where Oln and Qo_, are the heat transferred in and out of the domain and Q_. is the heat

generated in the domain, as shown by Figure 3.2.3. A useful double-check is to compute

the absolute value of the ratio E_ over Q_. When convergence is reached with respect

to the first convergence criterion, the value of IE,JQ,,I should be very small.

Numerically, [Et,_lQ_n [ was about 10 5 for the HTS thermal bridges and about 10 -1° for

the manganin thermal bridge after an average of twelve iterations for each model. These

values show that convergence has been reached for each model.

The last parameter of interest in the convergence of the models is the number of inner

iterations, NTC, used by the solver. The inner iterations in the program have to be

distinguished from the outer iterations. The inner iterations are applied to solve the

algebraic equations for a specific temperature distribution, whereas the outer iterations are

applied to update the temperature distribution. For the first outer iterations, NTC reached

generally NTIMES which is the maximum number of inner iterations allowed in the
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solver. This behavior is normal for nonlinear problems. However, as more outer

iterations were performed and convergence was approached, the number of inner iterations

became less than NTIMES. This decrease in the NTC values indicates that the models

are not only converged but are also properly formulated.

3.2.4.2 Temperature Distributions and Conductive Heat Load on the Cryogen

As mentioned earlier, the results for the temperature distributions and conductive heat

load on the cryogen, without the consideration of the Joule heating in the manganin wires,

have been provided and discussed in detail by Scott and Lee (1994). Although the

manganin mathematical model, presented in Section 3.2.3, includes a Joule heating term,

the results for manganin were not affected by this volumetric heat source, as expected.

Recall that the current for the envisioned application is quite low (1 IIA) and develops an

insignificant heat source. This negligible Joule heating source has been previously

observed by Caton and Selim (1992) for the same experimental conditions as those of this

research. The results presented by Scott and Lee for the manganin wires can therefore

be considered to represent the effective conductive heat transfer through the wires.

Lee (1994) studied the effect of both the length of the thermal bridges (101.6 mm and

152.4 mm) and the input heat flux at the warm end on the temperature distributions and

on the conductive heat load on the cryogen. Lee showed that longer thermal bridges and

lower input heat fluxes generate lower heat loads, as one would expect. A general result

of Lee's study is that the substrate material is the largest contributor to the heat transfer

through the HTS-substrate combination.
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The heat load on the cryogenwasshownto be minimum for the 152.4mm long

thermalbridges. The resultsobtainedin this case(ScoUand Lee, 1994)arepresented

next. Figure 3.2.4showsthetemperaturedistribution for eachconductivemodel. The

temperaturedistributionis a functionof the lengthof thethermalbridge (x direction)but

is independentof the y and z directions of the model. This result validates the one-

dimensional parallel flow assumption made in the calculation of the input heat flux at the

warm end (Lee, 1994). The temperature distribution is required for the estimation of the

thermal conductivities; this is developed in Chapter 4.

Table 3.2.1 summarizes for each model the heat load on the cryogen, the percentage

of heat load displayed and the extended life expected for the satellite on a five-year

mission. One can see that the heat load on the cryogen by four of the five HTS models

represents less than fifteen percent of the total heat load on the cryogen, while the

manganin model produces a heat load of about twenty percent. These particular HTS

Table 3.2.1. Heat Load on the Cryogen, Percentage of Heat Load Displayed and

Extended life on a Five-year Mission for the Different Types of 152.4 mm

Long Thermal Bridges (Scott and Lee, 1994).

Heat Load on the

Cryogen (W)

Percentage of Heat
load (%)

Extended Life on a 5-

year Mission
(months)

Manganin

1.00E-3

20.0

0.0

YBCO/

YSZ

7.48E-4

14.9

+3.0

BSCCO/

YSZ

5.89E-4

11.7

+4.9

YBCO/ YBCO/

GREEN FSI

3.74E-3

74.7

-32.8

4.03E-4

8.1

+7.2

BSCCO/

FSI

2.44E-4

4.9

+9.1
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thermal bridges are therefore potential replacements for the manganin wires as electronic

leads in cryogenic infrared sensor satellites.

3.3 Evaluation of the Radiative Heat Source on the HTS Thermal Bridges

Let us now examine the heat transfer assumptions made in the conduction analysis.

In Lee's experimental design, described in Section 3.1, convection and solar radiation can

both be neglected because of the vacuum environment of 6.8 atm and the protective

shielding on the spacecraft, respectively. But no reliable assumption can be made about

the radiative exchange within the thermal bridge housing area. In reality, radiation could

affect the conductive heat load on the cryogen calculated for the high-temperature

superconductor thermal bridges. The goal of the following investigation is to conduct a

radiant interchange analysis within a high-temperature superconductor housing area and

to determine if neglecting radiation in the conduction analysis is a valid assumption.

The first subsection focuses on describing the radiation problem. The next subsection

is devoted to the theoretical developments used in a Monte-Carlo analysis to determine

the distribution factors in the enclosure, and the radiative heat fluxes. Recall that the

distribution factors reveal the radiative exchange between the surfaces within the

enclosure. The results axe provided and discussed in the final subsection. The

distribution factors and the radiative heat fluxes were computed using the programs

MC.FOR (Appendix C) and TQ.FOR (Appendix D), respectively.
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3.3.1 Problem Description

To study the radiant interchange within an HTS isolator housing area, a specific

enclosure was defined and divided into n surfaces. Either the temperature distribution or

the heat flux distribution was specified on each surface. The enclosure is described in

detail in the first part of this subsection. Discussed next is the estimation of the radiative

properties, the emissivity, absorptivity and reflectivity ratio, of the materials in the

enclosure. The surfaces were assumed to be gray and diffuse emitters which allowed the

emissivity and absorptivity to be equal. The emissivities were estimated using the

electromagnetic theory applied to radiative-property estimation. Because no procedure

was found to predict the reflectivity ratios, these were evaluated based on reasonable

estimated values.

3.3.1.1 Description of the Enclosure

Since the thermal housing area (see Figure 3.1.2) is symmetric with respect to the

three separate chambers, only a single housing chamber needed to be analyzed. It has the

shape of the third of a cylinder, as shown by Figure 3.3.1. The housing wall material is

pure copper (copper OFHC). The thermal bridge was approximated as the substrate

material alone. This simplification is acceptable geometrically because the HTS material

printed on the suhstrate is very thin. The three different substrates, Fused Silica (FSI),

Yttrium Stabilized Zirconia (YSZ) and Green Phase (GREEN), studied in the conduction

analysis, were used. The surface numbering scheme is presented in Figure 3.3.2. The

single housing chamber was divided into five surfaces: surfaces 1 and 2 are the surfaces
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isolating the single housing chamber from the other two; surface 3 is the cylindrical wall

and surfaces 4 and 5 are the bottom and top surfaces of the chamber, respectively.

Because the temperatures or heat fluxes are uniform on the surfaces of the single housing

chamber, these surfaces were not subdivided into smaller areas. The substrate material,

however, was subdivided into several horizontal rings, denoted by nrings. Each ring has

four surfaces. The enclosure contains n surfaces, where n is given by

n = 5 + 4(nr/ng_) . (3.3.1)

Note that the total area of the surfaces of the single housing chamber is much larger than

the total area of the surfaces of the substrate material. This factor will be important in

the interpretation of the radiant interchange results since the area parameter is taken into

account in the calculation of the distribution factors.

The boundary conditions were specified on each surface. Because surfaces 1 and 2

play the role of isolator between the three single vacuum chambers, the flux is zero on

these surfaces. For the other surfaces, the temperatures are known. On surface 3, the

cylindrical wall, the temperature is assumed fixed at 30 K. The temperature at the end

walls of the chamber are 4 K and 80 K, respectively. Since the substrate material is

assumed to be bonded to the end walls of the cylinder, its temperature distribution varies

from 4 K to 80 K. The temperature distribution obtained for the combination

superconductor/substrate, using the finite difference program ORTHO3D, was adopted for

the substrate temperature. This is appropriate because in the conduction analysis, the

substrate has been shown to have the most effect on the temperature distribution of the

combination. Using a polynomial fit, the temperature distribution of each substrate was
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approximatedasa function of the length of the thermal bridge. Polynomial fits were

performed on the combinations YBCO/GREEN, BSCCO/FSI, and BSCCO/YSZ. The

combinations BSCCO/FSI and BSCCO/YSZ were chosen for the substrates FSI and YSZ,

respectively, because, from the conduction analysis, these generate less heat loads on the

cryogen than the combinations YBCO/FSI and YBCO/YSZ. Consequently, when

comparing the radiative heat source with the conductive heat source generated on the

cryogen, the results will be conservative.

To complete the description of the enclosure, the surface radiative properties must be

discussed. The basic radiative properties used in a radiant interchange analysis are the

emissivity and absorptivity. Since the radiant interchange is modeled to account for

mixed specular and diffuse reflections, the reflectivity ratio of each surface must also be

known. The reflectivity ratio R is defined by

R - /¢ (3.3.2)

where/¢ is the specular component of the reflectivity and pd is the diffuse component of

the reflectivity. Unfortunately, a literature review was not able to yield the radiative

properties of the specific substrate materials used in this research. This points out the

lack of information in this area. Actually, we see that on one hand there has been a

considerable increase of work in the radiation analysis field, but on the other hand

insufficient work has been done in determining radiative properties. Hopefully within the

next few years, more laboratories will be established for conducting such experiments.

Until then, the properties can only be estimated.
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3.3.1.2 Estimation of the Radiative Properties

The temperature in the enclosure varies from 4 K to 80 K. Referring to the

hemispherical spectral emissive power of a blackbody (Siegel and Howell, 1992), in this

temperature range the spectrum of the electromagnetic radiation within the enclosure

should be dominated by long wavelengths (IR). Emission, absorption and reflection occur

then in the same range of wavelengths for all surfaces. Therefore this problem is

assumed to be independent of wavelength; or in other words, it is assumed that the

surfaces are gray. This assumption could also have been concluded by simply considering

the maximum temperature difference in the enclosure. Indeed, with a maximum

temperature difference of "only" 76 K (compared to the temperature difference existing

between the sun and the earth), the range of wavelengths at which each surface emits is

expected to be roughly the same for all surfaces.

By applying the gray assumption, directional spectral radiative

simplified to directional properties. We can then write for the emissivity,

(x,7",o ) : ,4,),

and for the absorptivity,

Now from Kirchhoff's law,

or more specifically

properties are

(3.3.3)

E/ (T,0=0,_b) = a/,,(T,0=0,_b) . (3.3.6)

Equation (3.3.6) is a useful result because usually only the normal directional properties
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aregiven in the literature. In addition, all surfaces in the enclosure are assumed to be

diffuse emitters, which is equivalent to saying that the total directional incident intensity

of radiation is independent of direction,

i 'i(T,O,dp ) = i li(T ) . (3.3.7)

It can be shown that

f a/,,( T, Oi:O,dPi)i /i( T)co$O d cDi

a(T) = z,_ : _(T) . (3.3.8)

fi ',(73cos0acoi
2_r

Therefore, only the emissivity, for which more information is given in the literature, needs

to be estimated.

The electromagnetic theory applied to radiative-property prediction was used to

estimate the emissivity of both the substrate material and the copper. This theory is based

on the wave-surface interaction analysis, assuming an ideal interaction between the

incident electromagnetic wave and the surface (Siegel and Howell, 1992). It has two

limitations for practical calculations, which are the restriction to wavelengths greater than

the visible spectrum and the application only for pure substances with ideally smooth

surfaces. The first limitation is completely respected because the electromagnetic

radiation within the enclosure is in the long wavelength region as previously explained.

However, with respect to the second limitation, the effects of surface conditions of the

copper and the substrate material on their radiative properties have to be neglected. This

assumption is reasonable for the pure copper used in this research, which can be

considered to he a highly polished copper. In the case of the substrate material, however,
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the assumptionof neglectingthe effectsof surfaceconditionscould be responsiblefor

large variationsbetweentheactualemissivityand the theoreticalpredictedemissivity.

The electromagnetictheorypredictstherelationsbetweenthe hemisphericalandthe

normal emissivities. Theserelationsare provided by Siegeland Howell (1992) for

dielectric materials (Figure 4.7.b p. 116) and for metals (Figure 4.10.b p. 122). To

estimatethe unknownemissivitiesof the materialsusedin theenclosure,theserelations

were appliedconsideringthe substrateasa dielectricmaterialandthecopperasa metal.

Thenormalemissivity(E'n)of anotherceramicmaterial,themagnesia(MgO) foundin the

literature (SiegelandHowell, 1992;IncroperaandDe Witt, 1990),wasadoptedfor the

substrate(_'n_ [0.7-0.9]). In thecaseof the copper,thenormal emissivity of a highly

polished copper was used (_'n _ [0.01-0.02]). The emissivities of the substrate and the

copper were predicted to be in the ranges [0.7-0.85] and [0.013-0.025], respectively.

Because no method was found to provide an estimation of the reflectivity ratio R

(=ff/(ff+pa)), reasonable estimates from a professional in radiation heat transfer, Dr. J.R.

Mahan (1994), were used.

Table 3.3.1 summarizes the predicted radiative properties. Nominal, minimum and

maximum values are given for both materials (copper and substrate). These different

values of the radiative properties will permit the study of the influence of the radiative

properties in the problem. The percentage of deviation for the computed radiative heat

flux on the substrate material, between the minimum and the maximum values of the

radiative properties, is of interest. Table 3.3.1 shows the considerable difference between

the radiative properties of the copper and those of the substrate material. The emissivity
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Table 3.3.1. Predicted Radiative Properties of the Single Housing Chamber Material

(Copper) and of the Substrate Material.

Emissivity

E min [ E nom _ r_u_ _ mi_

Substrate 0.70 0.80 0.85 0.70

Copper 0.013 0.020 0.025 0.013

Absorptivity a

_nom _max

0.80 0.85

0.020 0.025

Reflectivity ratio R

gm/n

0.10

0.90 0.95 1.00

(and absorptivity) of the copper is shown to be much smaller than the emissivity (and

absorptivity) of the substrate material, whereas the reflectivity p of the copper is much

higher (p-=l-a). From this, large distribution factors for the surfaces of the substrate

material will be expected in the Monte-Carlo analysis of the enclosure. Recall that the

distribution factor D_j represents the fraction of diffusely emitted radiation from surface

i that is absorbed by surface j due to direct radiation and to all directional diffuse and

specular reflections. However, the considerable difference between the total areas of the

surfaces made of copper and those made of substrate material is also directly proportional

in the distribution factor solution. Therefore no accurate conclusion can be anticipated

from the distribution factor results.

Note that since the three substrate materials studied in this research have the same

estimated radiative properties, the variation in their respective radiative heat loads will be

a result of the variation in their temperature distributions.
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3.3.2 Monte-Carlo Formulation

Now that the enclosure has been defined along with its physical properties, the next

step is to analyze the radiation exchange between the surface elements. The radiant

interchange model has to account for mixed specular and diffuse reflection. Furthermore

it must have the ability to treat the specific geometry of the enclosure. With these

required conditions, the Monte-Carlo method was chosen to model the present radiative

problem.

The analysis of the radiation exchange between the surface elements of the enclosure

was performed in two phases. First the distribution factors were computed using the

Monte-Carlo method and second, the distribution factor results were used in calculating

the radiative heat flux supplied to each surface.

3.3.2.1 Distribution Factors

The Monte-Carlo method is a statistical numerical method which models radiation by

following the life of discrete energy bundles from emission to absorption using the

probabilistic interpretation of the surface properties. The Monte-Carlo approach is

straightforward and consists of six basic steps that have been explained in detail by, for

example, Bongiovi (1993). Figure 3.3.3 provides a flow chart for the procedure.

Distribution factors D o are calculated by counting the number of energy bundles emitted

from each surface i (counter Ni in Figure 3.3.3) and the number of those absorbed by each

surface j (counter N o in Figure 3.3.3). The solution converges if a sufficiently large

number (depending on the problem) of energy bundles has been emitted. Consequently,
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Figure 3.3.3. Flow Chart for the Monte-Carlo Procedure.
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this procedure has the disadvantage of sometimes requiring an excessive computer CPU

time. Thus, engineering judgment is necessary to settle compromises between the size

and number of surface elements and the number of energy bundles emitted.

The Monte-Carlo analysis of the enclosure was performed by the Fortran code

MC.FOR (see Appendix C). The output provided the distribution factors D Ucharacteristic

of the radiative exchange within the enclosure. The purpose of computing the distribution

factors in the enclosure was to determine the radiative heat flux supplied to each surface,

especially to the substrate material and to surface 4 which is in contact with the cold tip

disk at a temperature of 4 K in the experimental design (see Figures 3.1.3 and 3.3.2).

A method to check convergence of the distribution factors is to calculate the weighted

error E. From reciprocity,

_r4.Dij = ,ft/Dji . (3.3.9)

Summing this result over j,

n /I

I;,r4.D/i = _l,t4/Dii , i=l,2,...,n .j=l =

(3.3.10)

From the conservation of energy,

n

IP,D ij
j=l

: 1, i=l,2,...,n. (3.3.11)

Therefore,

i:l,2,...,n , (3.3.12)

and the error ei on each surface i is
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e i= 2 _/APJi-1, i=l,2,...,n .
j=l _dii

(3.3.13)

The weighted error E is then

tl

_et,'l i
E- i=1

ltl

Y-.,Ai
i=1

(3.3.14)

The error E should decrease as convergence is obtained or, in other words, as the number

of energy bundle increases.

3.3.2.2 Radiative Heat Flux

The radiative heat flux Qi (in watts) on surface i can be defined as the difference

between the emitted and absorbed radiation by surface i. When Qi is negative, surface

i globally absorbs energy and when Qi is positive, surface i globally emits energy. In the

case of the enclosure described in this study, which consists of n diffusely emitting and

absorbing, diffuse-specularly reflecting, gray, opaque surfaces, the radiation emitted by

surface i at temperature T_ with area Ai and emissivity 6i is

Q,_,,,,e : A _Ti 4 , (3.3.15)

where o is tile Stefan-Boltzmann constant (o=-5.6696x10 -8 W/m2-K4).

Using the distribution factors, the radiation emitted by surface j at temperature T; with

area Aj and emissivity Ej and absorbed by surface i is

Qji,,,h_ = A fljoTj4Oji • (3.3.16)

Then summing over j gives the total radiation absorbed by surface i,
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n

Qi_ : _ A f pT:Dii • (3.3.17)
./=1

Applying reciprocity (see Eq. (3.3.9)),

n

Qi,abs = __,A f,aTj4Do " (3.3.18)
j=l

The radiative heat flux Qi on surface i can therefore be expressed as

Qi : Qi,emit- Qi_abs " (3.3.19)

Substituting Qi.e_, and Qtab,,

n

Q, = A,_trT_ 4 - _,A,%oTj4Di), i=l,2,...,n . (3.3.20)
j=l

Introducing the Kronecker delta function 80 simplifies the flux to

/I

Qi = _AfpTj4(Sij-Dij) , i=l,2,...,n . (3.3.21)
j=l

When all surfaces in an enclosure have a specified temperature, the radiative heat

fluxes are then easily solved by using Eq. (3.3.21). However, in this study, the enclosure

contains two surfaces (surfaces 1 and 2, see Section 3.3.1) with a specified heat flux. In

this case, the unknown temperatures must first be determined before solving for the

unknown heat fluxes. A general solution was written assuming that in the enclosure of

interest, N surfaces have specified heat flux and (n-N) surfaces have specified

temperatures. Therefore, the radiative heat flux Qi is known for I_<i<_N, and the

temperature T_ is known for N+l<_i_n.

Using Eq. (3.3.21), for l<_/<_N, we can write
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Qi

A£o
! l

N

' +
k=l

n

(-Dij)Tj4 .
j=N+I

(3.3.22)

Rearranging,

N lel

E - Q' + E D,,.r;,
k=l Afo j=N+I

i=l,2,...,N . (3.3.23)

If we define

N

Uik : _ (Sik-Dik) , i:l,2,...,N,
k=l

(3.3.24)

and

V.. - Qi n
+ _ DqTj 4 , i:l,2,...,N, (3.3.25)

'J Afo j=N+I

Equation (3.3.23) yields

Uu, [Tk 4] = Vq, i:l,2,...,N, (3.3.26)

where the summations over k (from 1 to N) and overj (from N+I to n) axe implied by

the repeated subscripts. This matrix form allows us to solve for the unknown

temperatures T_ by inverting the Ua matrix. Going back to our specific case where T1 and

7"2are unknown, Eq. (3.3.26) is applied for N=2. The unknown radiative heat fluxes Qi

can then be determined using Eq. (3.3.21).

The final objective is to determine whether or not the radiative heat source is a

significant source of heat load on the cryogen. In doing so, it is interesting to consider

four different radiative heat loads, as seen in Figure 3.3.4, and to compare them with the

conductive heat load supplied to the cryogen. In the first case, the radiative heat load
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(Q,_t-bo,) on the bottom of the substrate (T=4 K) from the entire enclosure is analyzed.

Then in the second case the radiative heat load (Qr,a-topt,ot) on the bottom of the substrate

(T=4 K) from the top of the substrate (T=80 K) is considered. The radiative heat load

(Q_-to,) on the entire substrate from the entire enclosure is studied in the third case.

Eventually, in the final case the radiative heat load (Q,oa.54) on surface 4 (bottom wall of

the housing chamber at 4 K) from surface 5 (top wall of the housing chamber at 80 K)

is calculated. The computation of these four radiative heat loads is described below.

Recall that the substrate is divided into several rings (see Figure 3.3.2); and a ring is

constituted by 4 surfaces. The bottom of the substrate is the first ring (surfaces 6,

6+nrings, 6+2nrings, 6+3nrings) and the top of the substrate is the last ring (surfaces

6+nrings-1, 6+2nrings-1, 6+ 3nrings-1, 6+4nrings-1). In this notation, "2nrings", for

example, implies a multiplication of "nrings" by "2". It is important to point out that the

radiative heat loads represented by cases 1 and 2 are arbitrary as these heat loads depend

on the number and size of the tings in the substrate material, whereas the radiative heat

loads represented by cases 3 and 4 are absolute values. Therefore, cases 3 and 4 will be

more meaningful than the two first cases in the interpretation of the importance of

radiation on the cryogenic heat load.

For the first case we define Q,oa.t,o, as

Q,,a-_, : Q(6)+Q(6+nrings)÷Q(6+2nrings)+Q(6-_3nrings) . (3.3.27)

Then for the second case Q,,a-_ isdescribedby

Q_-tot_ot = Qbot,emit- Q_,,obot_, , (3.3.28)

where Qt,ot.,mit is the radiation emitted by the bottom of the substrate (see Eq. (3.3.15)),
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and Q,opboto_, is the radiation emitted by the top of the substrate and absorbed by the

bottom (see Eq. (3.3.16)). Substituting,

Q,,_l-toobot = _ [A f ff Ti4 - _ [A f,°T:Dij] ' (3.3.29)
i j

where i=6, 6+nrings, 6+2nrings, 6+3nrings, and j=6+nrings-1, 6+2nrings-1, 6+3nrings-1,

6+4nrings-1. Rearranging,

Q,_-tot,ot : __.,A:p [Ti4-__, T/D,jl , (3.3.30)
i j

where the summations over i and j are specified above.

For the third case Q,ad-_, is stated as

n

Q,_-ao, : _ Q(i) , (3.3.31)
i=6

where the surfaces 6 to n are those which constitute the substrate material.

Finally, for the fourth case Qr_d-54is expressed as

O,nd-54 = a4_mit- Q54_ , (3.3.32)

where Q4.,,_, is the radiation emitted by surface 4 (see Eq. (3.3.15)), and Qu._,, is the

radiation emitted by surface 5 and absorbed by surface 4 (see Eq. (3.3.16)). Substituting,

araa-54: A464°'[T44- 7"54/)45]• (3.3.33)
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3.3.3 Results and Discussion

This subsection is devoted to the results obtained from the radiant interchange

analysis within the enclosure described in Section 3.3.1. The results for the distribution

factors, determined using the program MC.FOR (Appendix C), are discussed first. Then

the results for the four radiative heat loads described in the previous section and

calculated using the program TQ.FOR(Appendix D), are analyzed.

3.3.3.1 Results of the Distribution Factors

In the next subsections, the convergence and symmetry of the solution of the

distribution factors and the influence of the estimated radiative properties are carefully

examined. Note that to analyze the distribution factors, the substrate was not divided into

several rings. Therefore nrings equals 1 and then the total number of surfaces n in the

enclosure is nine. This case was chosen because it requires less computing time.

3.3.3.1.1 Convergence of the Distribution Factors

First let us be sure that the solution for the distribution factors Dq converges before

analyzing the heat flux. The convergence is checked by calculating the weighted error

E using Eq. (3.3.14). Since the solution converges if a sufficiently large number of

energy bundles has been emitted, the error E should decrease with the increase of the

number of bundles. This behavior is outlined by Figure 3.3.5. As expected, the slope of

the decrease of E is very large for small numbers of bundles emitted. Then the slope

decreases and becomes very slight after 100,000 energy bundles have been emitted
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(E=4.55 percent). For the emission of a million bundles, the weighted error has decreased

to 4.44 percent. These results were obtained using the nominal radiative properties. The

weighted error was found to be slightly smaller for the maximum values of the properties

and slightly larger for the minimum values of the properties. This phenomenon is logical

because the minimum absorptivity of the copper corresponds to its maximum reflectivity,

and as more energy bundles are reflected, the numerical error becomes larger.

For the following runs, the number of energy bundles emitted was chosen to be

I00,000 bundles. This choice allows for a reasonable compromise between the accuracy

of the solution and the long computing time required to run with a maximum absorptivity

of 0.025 for the larger surfaces (single housing chamber surfaces).

3.3.3.1.2 Respect of the Synunetry

Now let us check that the geometric symmetry in the enclosure is respected in the

distribution factors. The examples below show that, for two identical surfaces in the

enclosure, the same (+ the error E) distribution factors are obtained:

D(1,1) = 0.0578 - D(2,2) = 0.0576

D(1,2) = 0.0667 - D(2,1) = 0.0651

D(3,1) = 0.0721 - D(3,2) = 0.0740

D(9,4) = 0.0191 - D(8,5) = 0.0189

D(9,1) = 0.0520 - D(8,2) = 0.0518

These results were obtained for 100,000 energy bundles emitted, using the nominal
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radiativeproperties.For 1,000,000bundlesemitted,theresultsaremoreaccurate,asone

would expect. It can thusbeconcludedthat thesolution is symmetric.

3.3.3.1.3 Influence of the Radiative Properties on the Distribution Factors

Figure 3.3.6 shows the effects of the surface radiative property estimated values on

the distribution factors D(1,j), for nrings=l and hence 1< j <9. The variation for D(1,j)

depends strongly on the properties. For the minimum values of the absorptivity

(_copper-----O.013 in the single housing chamber), surface 1 sees itself less than for the

nominal values (acop_,er--0.02) and almost half as much as for the maximum values

(_coemr---0.025). This behavior is expected since the value of the minimum absorptivity is

half the value of the maximum absorptivity. For each surface, the distribution factors

obtained using the nominal properties are approximately the average between the results

obtained using the minimum properties and those obtained using the maximum properties.

An interesting result is the indirect effect of the housing chamber material properties.

The actual housing chamber material is the OFHC copper with a very low emissivity and

absorptivity, and a very high reflectivity. For the minimum values of the absorptivity or,

in other words, for the maximum values of the reflectivity (recall that p=l-a), surface 1

sees the substrate better than for larger absorptivities (smaller reflectivities) due to all the

reflections on the copper. This demonstrates the fact that a material with lower

reflectivity for the housing chamber would contribute to lower distribution factors to the

substrate and hence lower radiative heat flux on the substrate. Indeed, the lower the

distribution factors to the substrate, the lower the radiative heat flux on the substrate.

67



I , i , i , i ,

c_ o o o o

(._t)(]

68



Note, however, that the high reflectivity (low absorptivity) of the single housing chamber

material will help to obtain a low radiative heat load on surface 4 from surface 5.

3.3.3.2 Results of the Radiative Heat Flux

The interpretation of the results of the radiative heat flux on the substrate and on

surface 4 is the focal point in this investigation. The influence on the radiative heat flux

of both the substrate material division into several rings and the estimated radiative

properties, is studied. The four different radiative heat loads, developed in Section

3.3.2.2, are then analyzed for the three different substrate materials studied, and compared

with the conductive heat loads generated on the cryogen by these materials. The

conductive heat loads were predicted in the conduction analysis using the finite difference

program ORTHO3D. The comparisons allow us to conclude whether or not radiation can

be neglected in the conduction analysis of the HTS thermal bridges.

3.3.3.2.1 Influence of the Number of Rings

The subdivision of the substrate material into as many rings as possible is advised

since it provides an accurate temperature distribution in the substrate. Indeed, for each

ring, the temperature is assumed uniform and its value is taken in the middle of the ring.

The results obtained for one ring in the substrate thus have no physical meaning.

The maximum number of rings studied was sixteen which, in the optimization of the

computer CPU time, gave good trade-off between the number of surfaces in the enclosure

(n=69 for nrings=16) and the number of energy bundles emitted (100,000).
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3.3.3.2.2 Influence of the Radiative Properties on the Radiative Heat Flux

A study was done on the influence of the estimated radiative properties on the

radiative heat load Q,_a-t,_obot for the fused silica substrate divided into sixteen rings.

Qma-_opt,ot was described in Section 3.3.2.2 as the radiative heat load on the bottom of the

substrate (T=4 K) from the top of the substrate (T=80 K). The fused silica (FSI) substrate

was preferred to the two other substrates because it generates less of a conductive heat

load.

Table 3.3.2 shows that the amount of radiation received by the bottom of the FSI

substrate from its top increases as the absorptivity of both materials, and especially the

substrate, increases. This relationship indicates that the single housing chamber material

properties (specifically the reflectivity) have less effect on the radiative heat load on the

substrate than the properties of the substrate itself. Indeed, there is a direct relationship

between the absorptivity (or the reflectivity) of the substrate and its radiative heat flux,

which is: the larger the absorptivity (the lower the reflectivity), the larger the radiative

heat flux (see Eq. (3.3.18) which gives the total radiation absorbed by surface i, and recall

Table 3.3.2. Radiative Heat Load on the Bottom of the FSI Substrate (T=4 K) from its

Top (T=80 K) for the Minimum, Nominal, and Maximum Radiative

Property Values and for nrings=16.

Estimated

Values

Minimum

Qr,_.k,pbo, (W) [ -9.19 E-6

Nominal Maximum % difference

(max-hOrn)/
nora

-9.45E-6I -9.96E-611 s.4

% difference

(rnin-nom)/
nora

-2.9

* Note: the negative sign means that the substrate material receives radiation.
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that _,=a_in the enclosure).

To beconservativewith theresults,thepercentagedifferencebetweenthemaximum

and the nominal radiativepropertiesneedsto be taken into account. This percentage

displaysan increaseof 5.4 percentin the radiativeheatload, which is relatively small

comparedto the differencebetweenthe maximumand thenominal radiativeproperties.

3.3.3.2.3 Importance of the Radiative Heat Source

The four different radiative heat loads, Qra,t-bot, Q,oa-tot,bot, Q,,,,,-,ot and Qra,t.54t developed

in Section 3.3.2.2, were evaluated for the three substrate materials (FSI, YSZ and

GREEN) divided into sixteen rings, using the nominal radiative property values. The

radiative heat loads were compared to the conductive heat load generated on the cryogen

by each substrate. The conductive heat loads were obtained in the conduction analysis

using the finite difference program ORTHO3D. In performing these comparisons, ratios

Rad/Cond, which shows the importance of radiation over conduction, were computed.

• The first case studied, the radiative heat load (Q,_-bo,) on the bottom of the

substrate (T--4 K) from the entire enclosure, was the worst case regarding the radiative

heat load. Table 3.3.3 shows that Q,oz.bo, represents almost 30 percent of the conductive

heat load if the substrate is FSI and almost 10 percent if the substrate is YSZ. The small

percentage (1.46 percent) obtained for the GREEN substrate comes from the fact that this

substrate generates a much larger conductive heat load on the cryogen than the two other

substrates.
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• In the second case, the radiative heat load (Q,,.,,-_,t) from the 80 K end wall of

the substrate (last ring) to the 4 K end wall (first ring) was analyzed. Table 3.3.4 shows

that the bottom of the FSI substrate receives from its top a radiative load smaller than 3.9

percent of the conductive load flowing between the two end walls of the substrate. This

percentage decreases to 1.59 percent and 0.24 percent when the YSZ and GREEN

substrate are employed, respectively. These percentages are very small and indicate that,

compared to conduction, radiation from the top of the substrate has a very slight effect

on the bottom of the substrate.

• The third case displays the radiative heat load (Q,,_._) on the entire substrate from

the entire enclosure. From Table 3.3.5, it is obvious that radiation on each substrate is

negligible compared to the conduction through each substrate.

• Finally, in the fourth case the radiative heat load (Q,,.,,._) on surface 4 from

surface 5 is presented. Table 3.3.6 shows that this radiative source represents less than

1.7 percent of the conductive source if the substrate is FSI and is negligible if the

substrate is YSZ or GREEN.

Table 3.3.3. Radiative Heat Load on the Bottom of the Substrate (T--4 K) from the
Entire Enclosure.

Substrate ] FSI YSZ

Qr,_-_, (w) -7.21 E-5 -5.69 E-5

Qco,_ (w) 2.44 E-4 5.89 E-4

GREEN

-5.45 E-5

3.74 E-3

Ratio (%)

Rad/Cond

29.59 9.66 1.46
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Table 3.3.4. RadiativeHeatLoadon theBottomof the Substrate(T=4 K) from theTop
of the Substrate(T=80K).

Substrate

Q,_,-_bo, (W)

t2co_ (W)

Ratio (%)

Rad/Cond

I FSI YSZ GREEN

-9.45 E-6 -9.40 E-6 -9.04 E-6

2.44 E-4 5.89 E-4 3.74 E-3

3.87 1.59 0.24

Table 3.3.5. Radiative Heat Load on the Entire Substrate from the Entire Enclosure.

Substrate FSI YSZ GREEN

Q,,a-,o, (W) -1.46 E-6 -1.24 E-6 -1.13 E-6

Qco,_ (w) 2.44 E-4 5.89 E-4 3.74 E-3

Ratio (%) 0.59 0.21 0.03

Rad/Cond

Table 3.3.6. Radiative Heat Load on Surface 4 from Surface 5.

Substrate FSI YSZ GREEN

Qr,a-u (W) -4.07 E-6 -4.07 E-6 -4.07 E-6

Qco,,d (W) 2.44 E-4 5.89 E-4 3.74 E-3

Ratio (%) 1.67 0.69 0.11

Rad/Cond
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The previous results show that in the fwst case, the radiative heat load on the bottom

of the substrate from the entire enclosure can be negligible for the Green Phase but not

for the Fused Silica and the Yttrium-Stabilized Zirconia. In the second case, the radiative

heat load applied from the top end of the substrate to the bottom end represents only 3.87

percent of the conductive heat load generated on the cryogen for the FSI substrate and

can be negligible (< 2 percen0 for the YSZ and GREEN substrates. The results for the

third and fourth case are of interest because, as previously mentioned, the radiative heat

loads represented by these cases are absolute values and do not depend on the number and

size of the rings in the substratc material. The third case indicated that the radiative heat

load on the entire substrate from the entire enclosure was found to be negligible for each

substrate. Finally, the radiative heat load on surface 4 from surface 5 can be negligible

(< 2 percen0 for each substrate.

Considering that the comparisons of the conductive heat load with the radiative heat

loads of the third and fourth case (Q,,.,L_ and Q,_._, respectively) provide the best

information for the significance of radiation on the cryogenic heat load, it is reasonable

to conclude that neglecting radiation on the I-ITS thermal bridges is a valid assumption

in the conduction analysis.

An important feature also displayed by this study is the use, for the housing chamber,

of a material with lower reflectivity than the reflectivity of pure copper. A lower

reflectivity would give fewer reflections on the housing walls, and then for instance, two

rings of the substrate would not be able to "see" each other any more. This would lower

radiation on the substrate. A lower reflectivity would also make the housing walls absorb
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more radiant energy since the absorptivity would be higher (,o=l-a), but they would also

emit more radiant energy (recall that a=E). The overall repercussion of using a housing

chamber material with lower reflectivity has been stressed in Section 3.3.3.1.3 when using

the maximum absorptivity values (minimum reflectivity values) to calculate the

distribution factors. The minimum reflectivity for the housing chamber material helped

to lower the distribution factors to the substrate. Thus, it is logical to assume that it

would help to lower radiation on the substrate. Consequently, it could then be possible

to obtain negligible radiative heat loads also for the f'u'st case analyzed previously. Note,

however, that in order to maintain the radiative heat load on surface 4 from surface 5

negligible, it is advised to keep the pure copper material with high reflectivity for surfaces

4 and 5 of the housing chamber.

It should be noted that since the HTS thermal bridges were approximated as the

substrate materials alone, the radiative properties of the superconductors were not taken

into account. However, the reflectivity of superconductors has been shown to be very

high (Siegel and Howell, 1992). In addition the study of the influence of the radiative

properties on the radiative heat flux showed that the larger the reflectivity of the substrate

material, the lower the radiative heat load on the substrate. Therefore, the difference

between the high reflectivity of superconductors and the predicted low reflectivity of

substrate materials is expected to affect the results on the superconductor/substrate

combinations in a positive manner, that is, it should help to obtain lower radiative heat

loads on the combinations. However, this difference is anticipated to increase the

radiative heat load on surface 4 from surface 5.
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CHAPTER 4

Thermal Conductivity Estimation of the HTS Thermal Bridges

This chapter focuses on the estimation of the thermal conductivities of the HTS

thermal bridges in the space environment. The capability to develop a methodology for

the determination of these thermal properties is a key strategy to assess the feasibility of

HTS-substrate combinations as electronic leads in infrared sensor satellite systems. Two

temperature-dependent thermal conductivity models for the HTS thermal bridges were

sought in this investigation. These allowed for the analysis of both the thermal

conductivities of the individual HTS thermal bridge materials and the effective thermal

conductivities of the HTS thermal bridges. Detailed sensitivity studies were conducted

on both thermal conductivity models. These studies resulted in the impossibility to

estimate the thermal conductivities as functions of the temperature along the thermal

bridges. Therefore, constant effective thermal conductivities were eventually estimated for

the HTS thermal bridges using the modified Box-Kanemasu estimation procedure.

The first section provides the theoretical development of the analysis used in

estimating the thermal conductivity model parameters. The results of the investigation
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for theestimationof thermalconductivitiesof theHTS thermalbridgesarepresentedand

discussedin thenext section.

4.1 Theoretical Considerations

In this section, the theoretical development used to analyze both the thermal

conductivities of the individual HTS thermal bridge materials and the effective thermal

conductivities of the composite HTS thermal bridges are presented. The material thermal

conductivities and the effective thermal conductivities were formulated as functions of

temperature. The estimation procedure for the thermal conductivities, a minimization

method called the modified Box-Kanemasu method, requires both calculated and

experimental temperatures. To estimate the individual thermal conductivities, that is for

the HTS and the substrate materials, or "material" thermal conductivities, the calculated

temperatures were obtained using the program ORTHO3D. The analysis of an "effective"

thermal conductivity, or the combined analysis of the material properties, allowed for the

simplification of the conductive heat transfer analysis within the thermal bridges.

Therefore, to estimate the effective thermal conductivities, the calculated temperatures

were obtained using a one-dimensional numerical scheme. In implementing the

estimation procedure (Section 4.2), simulated temperature data were generated by adding

random errors with a known variance to the temperature solution produced in the

conductive

procedure,

analysis (Section 3.2.4.2). Prior to the actual implementation of this

a detailed sensitivity study was performed to ensure reliable parameter
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estimates.

The first subsection focuses on the material and effective thermal conductivity

models. The second subsection provides the mathematical details of the parameter

estimation technique. The simulation of measured temperature data is discussed in the

following subsection. The final subsection describes the calculation of the sensitivity

coefficients and then details the methodology for the sensitivity analysis.

4.1.1 Thermal Conduclivlty Models

The capability to determine the thermal conductivities of the HTS thermal bridges

in the space environment will enable the assessment of the performance of HTS materials

as electronic leads in sensor satellites. In this investigation, mathematical models were

needed to estimate the material (eg., HTS, substrate and buffer layer if there is one) and

the effective thermal conductivities as functions of the temperature along the length of the

thermal bridges.

4.1.1.1 Themal Conductivity Model of the HTS Thermal Bridge Materials

The HTS thermal bridges studied in this research are comprised of HTS-substrate

combinations with and without a buffer layer, depending on the substrate material used,

as described in Section 3.1. The equations and the plots of the material thermal

conductivities have been provided by Lee (1994), and can be found in Appendix E. The

thermal conductivities, k_, were modeled as sixth-degree polynomials in temperature, that

is
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ki : flu +fli2T+fli3T2+fli4T3+flisT4 +flitT5 +fli7 T6 , (4.1.1)

where i denotes a specific material (eg., for the BSCCO/FSI thermal bridge, i=FSI for the

FSI substrate, i=BSCCO for the BSCCO superconductor and/=buffer layer for the buffer

layer). The estimation of ki will be performed through the study of the thermal

conductivity coefficients flij (]=1,7).

4.1.1.2 Effective Thermal Conductivity Model of the HTS Thermal Bridges

The HTS thermal bridges can be described by parallel thermal circuit configurations,

as shown in Figure 4.1.1. Note that because the temperature distribution is one-

dimensional along the thermal bridges, there is no temperature gradient, and hence no

thermal resistance, between the parallel elements in the configurations. The equivalent

thermal circuit is characterized by an effective thermal resistance, Rth,H. Using the

thermal resistances, Rth _, of each element i in the network, Rth _ is then expressed as

1 _ _ 1 (4.1.2)

Rth,H "7' Rthi

For a circuit of length L and cross-sectional area Ac, the thermal conductivity, k, can

be defined from the thermal resistance, Ra, by the relationship

L 1
k - (4.1.3)

A c R_

Combining Eqs. (4.1.2) and (4.1.3), we obtain an effective thermal conductivity, ke_, for

the HTS thermal bridges,
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ct,

• ACtor

where the subscript i includes the superconductor, the substrate material, and the buffer

layer if there is one. Ac_ ' represents the total cross-sectional area of the specific thermal

bridge and is calculated from

A` = _Ac . (4.1.5)
1

As mentioned previously, each k; is defined by a sixth-degree polynomial in

temperature. Therefore, ke_, is first determined as a sixth-degree polynomial and, using

a curve fit on the temperature range investigated (4-80 K), it is then restricted to a third-

degree polynomial to account for nonnegligible coefficients in the polynomial equation

only. The effective thermal conductivities of the HTS thermal bridges are eventually

expressed as

ke]'fi = _il+fli2T+fli3T2+_i4T3 ' (4.1.6)

where i denotes a specific thermal bridge. Again, the estimation of kgf ' will be

performed through the study of the parameters flo (j=l,4).

Figure 4.1.2 shows the effective thermal conductivity, k,_,, of the thermal bridge

BSCCO/FSI with the thermal conductivities of the superconductor BSCCO, ksscco, the

substrate FSI, k_, and the buffer layer (zirconia), k_r_r toy,r- One should notice that the

effective thermal conductivity distribution is similar to the substrate thermal conductivity

distribution. This behavior validates the general result presented by Lee (1994) that the

substrate material is the dominant factor in the HTS thermal bridge. The plots and the

coefficients of the effective thermal conductivities of the five different HTS thermal
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bridges are provided in Appendix E.

The effective thermal conductivity of the HTS thermal bridges is a useful tool to

quantify the conductive heat transfer through the thermal bridges. Indeed, the

determination of the effective thermal conductivity allows us to apply the one-dimensional

conduction equation within the entire thermal bridge and to write

dT (4.1.7)
q // = k 4l( T) dx ,

where q" is the input heat flux at the warm end of the thermal bridge given by Lee

(1994), and T is the temperature distribution along the thermal bridge (recall that the

temperature has been shown to be one-dimensional). Integrating Eq. (4.1.7),

x T

q//fd{=
o 41(.

and then integrating Eq. (4.1.8), gives

q l/x= ill(T-4) +-_(T2-42) +-_(T3-43) +-_(T4-44) •

Finally, rearranging Eq. (4.1.9),

f14T4+f13Ta._2T2+_I T
4 3 2

= q '_+4_1+8/_2+-_-_'_3+64_1 •

(4.1.8)

(4.1.9)

(4.1.10)
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Equation (4.1.10), which governs the temperature distribution along the thermal bridges,

is in the form f(T) = q/_c+C ,wherefis a polynomial function of degree three, and C is

a constant. Because of the physics of this problem, only one root is possible for the

temperature in the range [4-80 K]. The temperature distribution can be solved for easily



applying the bisection method. This method uses the intermediate-value theorem of

continuous functions and finds the root of a continuous function, f, in an interval [a,b].

A one-dimensional numerical scheme based on the bisection method was used to obtain

calculated temperatures in the effective thermal conductivity estimation.

It is important to point out that the temperature distributions obtained using both the

material and the effective thermal conductivity models ate in good agreement.

4.1.2 Estimation of the Thermal Conductivities

The method used to estimate the thermal conductivities described in the previous

section is the modified Box-Kanemasu estimation method. This method is a direct

modification of the Gauss Linearization method (Beck and Arnold, 1977), and allows for

nonlinearities in the model. It is based on the minimization of an objective function, the

least squares function S, which can be expressed mathematically as

S : [Y-T_)Ir[¥-T_)], (4.1.11)

where Y is the measured temperature vector, T(__) is the calculated temperature vector, and

/3 is the exact parameter vector that contains the unknown thermal conductivity

coefficients defined in Section 4.1.1. For the estimation of the thermal conductivities of

the HTS thermal bridge materials, the calculated temperatures were obtained using the

finite difference program ORTHO3D. Note that since the temperature distribution along

the thermal bridges has been found in Section 3.2.4.2 to be one dimensional, either

ORTHO3D or the original program CONDUCT (see Section 3.2.1) could have been used

to calculate temperatures. For the case of the estimation of the effective thermal
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conductivities,thecalculatedtemperaturesweredeterminedfrom Eq. (4.1.10)usingaone-

dimensionalnumericalschemebasedonthebisectionmethod.Theprocedureto simulate

measuredtemperaturesis discussedlater in Section4.1.3.

In theestimationprocedure,the leastsquaresfunction,S, is minimized with respect

to the unknown parameters, B, resulting in

V_S -- 2[-xT_a)ltr-r_a)l = o,
(4.1.12)

where X(__.) is the sensitivity coefficient matrix (Beck and Arnold, 1977), and is defined

as

: [v rr(a)] • (4.1.13)

The sensitivity coefficients are the derivatives of temperature with respect to the thermal

conductivity coefficients being estimated. They represent the sensitivity of the

temperature response to changes in the unknown parameters.

Because the conductive heat transfer in the HTS thermal bridges is a nonlinear

problem, Eq. (4.1.12) cannot be explicitly solved for the parameter vector B. Therefore,

two approximations are used to linearize this equation. First, the sensitivity coefficient

matrix, X(__), is replaced with X(b), where b is an estimate of/3; then the vector of

calculated temperatures, T(_), is approximated by using the first two terms of a Taylor

series of T(__) about b, which gives

r6fl) - r(b)+[V rr(b)lr -b) • (4.1.14)

Equation (4.1.12) then reduces to

__ : b+t'(b)[X r(b) (r-r (b))], (4.1.15)

where the vector P(b) is defined as
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P(b) = [X r(b)X(b)]-' (4.1.16)

Implementing an iterative scheme as described by Beck and Arnold (1977), the estimated

parameter vector b can be eventually derived, yielding

b (ka) = b(k)+lgk)[XT(k)(y-T(k))] , (4.1.17)

where the subscript k is the iteration number. In this iterative process, an initial estimate

b t°; is required. Equation (4.1.17) is known as the Gauss lineadzation equation.

To eliminate oscillations and nonconvergence which can sometimes occur for

nonlinear problems, the Box-Kanemasu method incorporates a scalar interpolation factor,

h, in the direction of the parameter variation. Equation (4.1.17) becomes

b (k*l) = b(k)+h (k*l)Agb(k), (4.1.18)

where the vector Asbt*_ is expressed as

A_b (k) = lgk)[Xr(k)(Y -T(k))] . (4.1.19)

At each iteration, the sum of squares, S, is approximated by a quadratic function in

h, the scalar interpolation factor. The value for h is then calculated by minimizing this

approximated form of S, giving

h ('") = G (%:[S<.k)-S<o')+2G (k)a]-x, (4.1.20)

where the scalar G is defined by

G (k) = [Asb(k)lr(Xrfk)_k))[asb(k)] . (4.1.21)

The value of the parameter a is initially set equal to one; Satk; and Sotk; axe the values of

S at a and zero, respectively. Note that the modified Box-Kanemasu method includes a

check to ensure the continuous d_rease of S from one iteration to another. This is done

by reducing a by one-half if Satk) is not less than Sott_. Figure 4.1.3 presents a flowchart
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Figure 4.1.3. Flow Chart for the Modified Box-Kanemasu Estimation Procedure

(Moncman, 1994).
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illustrating the modified Box-Kanemasu method.

The estimation procedure can sometimes encounter an unstable behavior resulting in

a less than 0.01 which terminates the calculations, or simply nonconvergence of the

estimates. This could be the effect of near-linear dependence of the parameter sensitivity

coefficients and/or very poor initial parameter estimates. The importance of a sensitivity

analysis prior to the estimation procedure is detailed in Section 4.1.4.

To estimate the thermal conductivity parameters of the HTS thermal bridge materials,

the subroutine KBOX3D.FOR (Appendix F) was written as the adapt subroutine of the

program ORTHO3D. For the estimation of the effective thermal conductivity parameters

of the HTS thermal bridges, a parameter estimation program called KBOXEFF.FOR

(Appendix G) was written using the bisection method to solve Eq. (4.1.10) which governs

the temperature distribution along the thermal bridges. Both KBOX3D.FOR and

KBOXEFF.FOR use the modified Box-Kanemasu method.

It should be noted that, when the temperature solution is governed by a transient

mathematical model, the concept of sequential estimation (Beck and Arnold, 1977), in

which the parameters are evaluated at each time step, is generally utilized in the

parameter estimation procedure. The advantage of applying this sequential estimation

technique to transient models is that it allows the user to observe the effects of additional

data on the sequential estimates and to evaluate the adequacy of the experimental design.

Ideally, at the conclusion of an experiment, any additional data should not affect the

parameter estimates. This concept was not of interest in this research since the heat

conduction process within the thermal bridges is steady state.
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4.1.3 Simulation of Measured Temperatures

The utilization of the modified Box-Kanemasu method for the estimation of the

thermal conductivities requires experimental temperatures. As no experimental

temperature measurements are available for this research project, simulated measurements

must then be generated. This was performed by adding random errors with a known

variance to the numerical temperatures obtained in the conduction analysis using the finite

difference program ORTHO3D (Section 3.2.4.2). In doing this, temperature sensors are

assumed to be placed along the HTS thermal bridges. However, in the proposed

spaceflight experiment, only one temperature sensor is considered at each end of the

thermal bridges (Section 3.1). Furthermore, since the temperature at the cold end is fixed

at 4 K in the conductive mathematical models, temperature information for the parameter

estimation can only be obtained from the sensor at the warm end of the thermal bridges.

To meet this experimental design requirement, the parameter estimation procedure was

also conducted using calculated and measured temperatures only at the warm end of the

thermal bridges.

The program YI.FOR (Appendix H) was written to simulate temperature data both

along the HTS thermal bridges and at the warm end of the thermal bridges. In this

program, normally distributed random errors with standard deviations of 0.1 K, 0.5 K and

1.0 K were added to the temperature values obtained using ORTHO3D. Recall that these

temperatures were obtained using the thermal conductivities of the materials in the

conductive mathematical models (Section 3.2). Ten different sets of random errors were

used for each standard deviation, which generated a total of thirty data sets.
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4.1.4 Sensitivity Analysis

The parameter estimation procedure used in this research allows for the simultaneous

estimation of the thermal conductivity parameters. However, if the sensitivity coefficients

of these parameters are small, sufficient information might not be available to estimate

the parameters. Furthermore, if the parameters are found to be correlated, they cannot

be simultaneously estimated as independent values (Beck and Arnold, 1977). Indeed,

correlation between the parameters induces the least squares function, S, to have no

unique minimum, and therefore results in the nonconvergence of the minimization

process. From these considerations, one understands the relevance in determining not

only the magnitude of the parameters sensitivity coefficients, but also the degree of

correlation between the various parameters prior to the estimation procedure. This is done

through the analysis of the parameter sensitivity coefficients.

In the next subsections, the mathematical details inherent in the determination of the

sensitivity coefficients of the thermal conductivity parameters are first presented. Then

the methodology to carefully examine the sensitivity coefficients is discussed.

4.1.4.1 Determination of the Sensitivity Coefficients

As mentioned previously, the sensitivity coefficients represent the sensitivity of the

temperature response to changes in the unknown parameters, namely the thermal

conductivity parameters ft. In the sensitivity study, it is meaningful to examine (Beck and

Arnold, 1977)
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(Xa,r+)+ =/3[--_-]dT+ , (4.1.22)

where (X_.r+) + is the dimensionless sensitivity coefficient of the parameter/3, T _ is the

dimensionless temperature and _,_t_ are all parameters other than/3 that remain constant.

Considering the one-dimensionality of the temperature distribution within the HTS

thermal bridges, a convenient dimensionless temperature to be used is

T-T o
T + - (4.1.23)

T,:T o '

where To and TL are the temperatures at the cold (x=0) and warm end (x=-L) of the thermal

bridges, respectively. Recall that TO is fixed at 4 K but TL depends on the value of the

pararneter/3. Because the sensilivity coefficients cannot be solved analytically, the term [_1

is approximated as

OT ÷ _, AT'_ T+([3+_)-T+O) (4.1.24)
9

where T_(/3) and T_(fl +AI3) are the dimensionless temperatures without and with the change

A/3 in the parameter/3, respectively. Note that T+(fl) and T*(fl+A_) are nondimensionalized

with respect to T(_), that is

T'(J3) = T(]3)-T°(J3) , T'(J3+A[3)= T(J3+AI3)-T°(J3) (4.1.25.a,b)
T, O)- Toq3) T,.qO Toq3)

The value for each thermal conductivity coefficient,/3, was obtained from the curve

fits of the thermal conductivity plots, which are provided in Appendix E. The change in

the parameter, AB, was chosen to represent one percent of the value of/3, which gives

91



zkO--0.01fl.Equation(4.1.22) reduces then to

_ 1 [ T(fl+&8)-T(fl) _ (4.1.26)(XI3'T'f 0.01 TL(fl)-To(fl)

The subroutine XI3D.FOR (Appendix I) was written as the adapt subroutine of the

program ORTHO3D to compute the dimensionless sensitivity coefficients of the thermal

conductivity parameters for the HTS thermal bridge materials. The sensitivity coefficients

of the effective thermal conductivity parameters for the I-ITS thermal bridges were

determined using the program XlEFF.FOR (Appendix J).

4.1.4.2 Methodology for the Sensitivity Analysis

The methodology used to examine the dimensionless sensitivity coefficients includes

the analysis of both the magnitude of the sensitivity coefficients and the linear

dependence between these coefficients. In case of near-linear dependence between the

sensitivity coefficients, the correlation matrix should be computed to check for any

correlation between the parameters to be estimated.

Small magnitudes (<10 .3) for dimensionless sensitivity coefficients indicate that the

dimensionless temperature profile is insensitive to changes in a specific parameter, while

large magnitudes (>1) represent extreme sensitivity to changes in a parameter (Scott,

1994). It should be noted that the limit 10 .3 is generally representative of the limiting

sensitivity in a given variable due to a change in a parameter. However, this limit is

flexible, especially in cases where near-linear dependence between the sensitivity

coefficients exists.
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The magnitude of the sensitivity coefficients can also be interpreted as the amount

of information about the value of the parameter available from the temperature

measurement data. Indeed, parameters estimated from data with large sensitivity

coefficients are generally more accurate than parameters estimated from data with small

sensitivity coefficients (Scott, 1994).

The second step in the careful examination of the sensitivity coefficients is to

consider the possibility of linear dependence between the sensitivity coefficients. The

initial step to investigate linear dependence is to simply plot the sensitivity coefficients

against each other. If the sensitivity coefficients appear to be linearly dependent, the

corresponding parameters are correlated and cannot be estimated simultaneously (Beck

and Arnold, 1977). Again a comment is required here to point out that even if the

sensitivity coefficients are not linearly dependent over the entire range of temperatures

investigated (if the temperature is the given variable of interest), near-linear dependency

can sometimes occur in the temperature range of interest and result in inaccurate

parameter estimates.

The next step in the present methodology is to compute the correlation matrix

according to Beck and Arnold (1977) for the uncorrelated parameters determined by the

plots of the sensitivity coefficients. This is especially important when a plot of the

sensitivity coefficients is inconclusive. The diagonal terms of the correlation matrix are

all unity and the off-diagonal terms must be in the interval [-1,1]. Whenever all the off-

diagonal terms exceed 0.9 in magnitude, the estimates are highly correlated and tend to

be inaccurate. One reason this could occur is that near-linear dependence between the
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sensitivity coefficients exits, causing the parameters to be correlated. Note that the

calculation of the correlation matrix should always be the final step in the investigation

of linear dependence between the sensitivity coefficients. Indeed, viewing the sensitivity

coefficients against each other in an initial step gives insight on the proportionality of

these coefficients over the entire range of temperatures investigated, whereas the off-

diagonal of the correlation matrix provides only an overall number. The subroutine

KBOX3D.FOR and the program KBOXEFF.FOR, both described in Section 4.1.2, were

used to compute the correlation matrix for the estimation of the thermal conductivity

coefficients of the HTS thermal bridge materials and the estimation of the effective

thermal conductivity coefficients of the HTS thermal bridges, respectively.

The analysis of the sensitivity coefficient magnitude and linear dependence should

be concluded with the determination of which parameters are to be estimated. On the

basis of the previous developments, uncorrelated parameters with the highest sensitivity

coefficients should be chosen to be estimated.

4.2 Results and Discussion

The results of the analysis for the estimation of both the HTS thermal bridge material

thermal conductivities and the HTS thermal bridge effective thermal conductivities are

presented and discussed in this section. Recall that these thermal conductivities are

modeled as polynomials in temperature, as described in Section 4.1.1, to account for

temperature dependence. In both models, correlations between the polynomial parameters
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are carefully examined prior to the estimation procedure. This is done through the

sensitivity analysis using the methodology detailed in Section 4.1.4.2. As both thermal

conductivity models display correlations between the parameters, simultaneous estimation

of the thermal conductivity parameters was concluded to be impossible. Therefore, the

estimation of constant effective thermal conductivities was performed for the HTS thermal

bridges.

The first subsection provides the results for the sensitivity analysis of the material

thermal conductivity model. The results for the estimation of the effective thermal

conductivities of the HTS thermal bridges are given in the next subsection. These results

include the sensitivity analysis of the effective thermal conductivity model developed in

Section 4.1.1.2, and the estimates obtained when studying the effective thermal

conductivities as constants.

4.2.1 Estimation of the Thermal Conductivities of the HTS Thermal Bridge

Materials

The material thermal conductivities are modeled as six degree polynomials in

temperature, as described by Eq. (4.1.1). The estimation of the thermal conductivity, ki,

of a specific material i in a HTS thermal bridge involves the simultaneous estimation of

the polynomial parameters _q (/=1,7). This parameter estimation problem becomes

complex as the HTS thermal bridges comprised of two, or three with the presence of a

buffer layer, materials. Before implementing the parameter estimation, the sensitivity

analysis of these multiple parameters is an imperative step to determine which parameters
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can be estimated. This analysis is performed following the methodology described

Section 4.1.4.2.

4.2.1.1 Sensitivity Analysis of the Polynomial Parameters of the Material Thermal
Conductivities

Let us first study the I-ITS thermal bridge BSCCO/FSI which was shown in Section

3.2.4.2 to minimize the heat load on the cryogen. Using Eq. (4.1.1), the thermal

conductivities of the substrate, krs_, the superconductor, ksscco, and the buffer layer

(zirconia), k_,_r l_r, are respectively expressed as,

krs I = (4.2.1)

knscc 0 = fl_,z +fl_2T+fl_T2+flh_4T3 +fl_jT4 +fl_TS +flb,7T6 , (4.2.2)

kb.,/:.,_, = B,,+B_2T+BaT2+Bz4T'+B_jT4+B_TS+BzrT6 . (4.2.3)

The dimensionless sensitivity coefficients of the 21 parameters S0, where the subscript i

denotes either FSI, BSCCO, or buffer layer and the subscript j denotes the place of the

parameter in the polynomial equation (/=1,7), are computed using Eq. (4.1.26) in the

adapt subroutine XI3D.FOR of the program ORTHO3D. The nominal values of the

parameters are provided in Appendix E. Following the methodology for the sensitivity

analysis, the magnitude of the dimensionless sensitivity coefficients is first examined.

Recall that in the magnitude investigation, the number 10 3 is generally representative of

the limit between small and large magnitudes. Table 4.2.1 shows that the magnitude of

the sensitivity coefficients of the parameters fla and _7 is smaller than 10 3, which

indicates that the temperature response is insensitive to changes in these parameters.

96



Table 4.2.1. Orders of Magnitude of the Dimensionless Sensitivity Coefficients of the

Material Thermal Conductivity Parameters for the Thermal Bridge

BSCCO/FSI.

FSI fl_

(X_l) + 10 .2 10"1

Zirconia fl a

10-1 10 "1 10 "1 10 -1 10. 2

(X_) + 10 .4 10 .3 10"3 10 .3 10 .3 10 .3 10.4

(X_bs) ÷ 10 .2 10. i 1 1 1 1 101

Therefore, these parameters cannot be estimated. The smallest magnitude (10. 3) is

obtained for the sensitivity coefficients (X_0) ÷, j=2,6. This result verifies the little

influence of the buffer layer on the temperature solution of the thermal bridge

BSCCO/FSI. Figure 4.2.1 displays the sensitivity coefficients with magnitudes equal to

or larger than 10- 3 along the thermal bridge. As one can see, the largest magnitude of the

sensitivity coefficients is obtained at the end of the thermal bridge, where the temperature

is the highest. Recall that the magnitude of the sensitivity coefficients can be interpreted

as the amount of information about the value of the parameter available from the

temperature measurement data. This behavior therefore stresses the importance of placing

in the experimental design a temperature sensor at the warm end of the thermal bridge

to acquire the most temperature information for the parameter estimation.

Figure 4.2.1 shows that the dimensionless sensitivity coefficients with magnitudes

smaller than 10 1 (sensitivity coefficients of the parameters tip, flit, flo (j=2,6) and fib,l) have

a similar distribution compared to the other sensitivity coefficients with larger magnitude.
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This indicates linear dependence (Beck and Arnold, 1977), and because of this, coupled

with the rather low magnitudes, the limit 10 .3 was reconsidered in this investigation, as

mentioned in Section 4.1.2.2, and chosen as 10 1 instead. The dimensionless sensitivity

coefficients with magnitude higher than 10-_ are plotted along the thermal bridge in Figure

4.2.2. There are four groups of sensitivity coefficients with similar behavior evident in

this figure. The first group includes the sensitivity coefficients (X_./4jt, b,5.bs7)÷. This

notation refers to the sensitivity coefficients of the parameters f/4, f/6, Bib,S, and fib,7,

respectively. The second group is comprised of the sensitivity coefficients (Xa.:,b,4,b,6) +.

The sensitivity coefficients (Xa.r_.ba) + and (X#.rj, b,_)+ constitute the third and fourth group,

respectively. The correlations between the sensitivity coefficients of these four groups

are shown Figures 4.2.3.a-d. The determination of correlation between sensitivity

coefficients from these plots is based on previous work on linear dependence between

sensitivity coefficients (Beck and Arnold, 1977). For each group of correlated parameters,

the parameter with the highest sensitivity coefficient is chosen to be analyzed, which

gives the four parameters fbs2, fb,3, fb,4, and fb,5.

In the continuation of this sensitivity analysis, the dimensionless sensitivity

coefficients of the four parameters mentioned above need to be plotted against each other

to further investigate any linear dependence. This is done in Figure 4.2.4. Note that the

use of the same scale when plotting the sensitivity coefficients against each other makes

any linear dependence between the sensitivity coefficients clearer. The results are

summarized in Table 4.2.2. A (+) sign indicates that linear dependence, or near-linear

dependence, is found and a (-) sign indicates that no linear dependence is evident. It
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Table 4.2.2. Linear Dependence of the Dimensionless Sensitivity Coefficients of the

Material Thermal Conductivity Parameters/3ha,/3m,/3b,4, and _b,5 for the

Thermal Bridge BSCCO/FSI. ((+) indicates linear dependence; (-) indicates

no linear dependence).

fib.,2 (+) (+) (+) (+)

flb,_ (+) (+) (+) (-)

_b,_ (+) (+) (+) (-)

_b,5 (+) (') (-) (+)

should be noted that if the sensitivity coefficients are linearly (or near-linearly) dependent

over almost the entire range investigated except at the very beginning of the range

(smallest value for the sensitivity coefficients), linear dependence was considered. Table

4.2.2 indicates that both simultaneous estimations of the parameters fib,3 with fib,5, and fib,4

with fibs5 can be studied. As explained in the methodology for the sensitivity coefficient

analysis, uncorrelated parameters with the highest sensitivity coefficients should be

chosen. This results in the choice of the parameters flbs_ and flb,_.

To conclude the present sensitivity analysis, the correlation matrix according to Beck

and Arnold (1977) should be computed prior to the simultaneous estimation of the

parameters fib,4 and fibs5. This is of importance in this investigation because near-linear

dependence could exist between the sensitivity coefficients (Xaba) ÷ and (Xab,_) ÷, as seen

in Figure 4.2.4. The computation of the correlation matrix was performed using the adapt

subroutine KBOX3D.FOR of the program ORTHO3D. Ten sets of calculated and

measured temperatures simulated with a standard deviation of 1.0 K along the thermal
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bridge, were utilized. In the fh-stsimulatedexperiment,the off-diagonal term of the

correlationmatrix wasfoundto be0.987whichexceededthelimit 0.9givenby Beckand

Arnold (1977). This result indicatesthat theestimatesarehighly correlatedandtend to

be inaccurate.Note,however,that thevalueof theestimatesfor theparametersflb,_and

fb,5 obtained for this first estimation were 1.241x10 4 and -2.096x10 6, respectively, and

were very close to the nominal values of these parameters (1.243x10 4 and -2.100x10 6,

for fb,_ and fb, J respectively, provided in Appendix E ).

In the other simulated experiments, the estimation procedure was terminated because

the value of the variable a was less than 0.01 in the modified Box-Kanemasu method (see

Figure 4.1.3). This stresses the instability of the simultaneous estimation of fb,4 and fib, J.

The correlation matrix of these experiments exhibited an off-diagonal term of about 0.988

which is slightly higher than in the first experiment. From these results, the simultaneous

estimation of the parameters fb,4 and fb, J was concluded to be impossible. Therefore,

among the polynomial parameters described at the beginning of this analysis for the

thermal bridge BSCCO/FSI, only one parameter of a specific material could be estimated.

The correlation between the parameters describing the thermal conductivities of the

individual materials analyzed was expected. Indeed, it was improbable that the material

thermal conductivities could have been distinguished because of the similarities of the

temperature prof'des when the substrate, the superconductor and the buffer layer thermal

paths are considered separately. However, the correlation between the parameters with

regards to the temperature was not evident. Therefore, the sensitivity analysis proved to

be a useful tool in assessing the possibility of the parameters' simultaneous estimation.
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Based on this analysis and on preliminary calculations, the same conclusion was

drawn for the four other HTS thermal bridges. As the estimation of one thermal

conductivity parameter for a specific material in a HTS thermal bridge was not of interest

in this research, no further investigations were conducted in the study of the individual

thermal conductivities of the HTS thermal bridge materials. It should be noted, however,

that this study would have been pursued if the simultaneous estimation of at least two

parameters, one for each material in a HTS thermal bridge, could have been performed

(these uncorrelated parameters could have then been estimated as constants for the

thermal conductivities of the corresponding materials).

4.2.2 Estimation of the Effective Thermal Conductivities of the HIS Thermal

Bridges

The effective thermal conductivities of the HTS thermal bridges were modeled as

third-degree polynomials in temperature, as described by Eq. (4.1.6). These models were

defined from the material thermal conductivity models using the equivalent thermal circuit

configurations in Section 4.1.1.2. Recall that the effective thermal conductivities were

restricted to third-degree polynomials to account for only nonnegligible coefficients in the

polynomial equations. This results in the analysis of four parameters flq (j=l,4) in the

estimation of each HTS thermal bridge effective thermal conductivities k_,. Proceeding

similarly as in Section 4.2.1, the sensitivity analysis of the parameters flu is performed for

each HTS thermal bridge prior to the implementation of the estimation procedure. Again,

the four parameters describing the effective thermal conductivities as functions of
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temperaturewerefoundto becorrelatedfor eachHTS thermalbridge. Therefore,the last

option available to perform an estimation of the HTS thermal bridge thermal

conductivitiesis to considertheeffectivethermalconductivitiesasconstants.

In the first subsection,the resultsof the sensitivity coefficient analysisof the

effective thermal conductivity polynomial model are provided for eachHTS thermal

bridge. The estimationof constanteffectivethermalconductivitiesfor the HTS thermal

bridgesis presentedanddiscussedin thenext subsection.

4.2.2.1 Sensitivity Analysis of the Polynomial Parameters of the Effective Thermal

Conductlvities

The sensitivity analysis of the polynomial parameters of the effective thermal

conductivities presented here is similar to that of the polynomial parameters of the

material thermal conductivities conducted in the previous subsection. Once again, using

the BSCCO/FSI thermal bridge as an example, the effective thermal conductivity k_,

is described by

keffnF : _BFI+_IBF2T+_BFsT2+_BF4T 3
(4.2.4)

The dimensionless sensitivity coefficients of the four parameters/3BF _ (/=1,4) are computed

using Eq. (4.1.26) in the program XIEFF.FOR. The nominal values of the parameters are

provided in Appendix E. Table 4.2.3 displays the magnitudes of the sensitivity

coefficients, which are higher than the general limit 10 .3.

The sensitivity coefficients (X_B_7)+ are plotted along the length of the thermal bridge

in Figure 4.2.5. As one can see, the four sensitivity coefficients have a similar linear
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Table 4.2.3. Ordersof Magnitudeof the DimensionlessSensitivityCoefficientsof the

Effective Thermal Conductivity Parameters for the Thermal Bridge

BSCCO/FSI.

BSCCO/FSI flB_-i flBF2

(X_Br) + 10 .2 10 -1

_BF3

I0 -1

_ BF4

lff I

behavior over the last one-third of the thermal bridge where the sensitivity coefficients

are the highest or, in other words, where the temperature provides the most information

for the simultaneous estimation of the parameters flBrj- This observation is of interest as

previous work has shown that even though the parameters are not linearly dependent over

the entire range investigated, near-linear dependency occurring in a fraction of the range

can result in inaccurate parameter estimates and in instability of the estimation procedure

(Saad, 1991).

In order to investigate linear dependence between the sensitivity coefficients, these

are plotted against each other in Figure 4.2.6. Table 4.2.4 summarizes the results. The

same notation as in Section 4.2.1 is used here. Also recall that if the sensitivity

coefficients are linearly (or near-linearly) dependent over the entire range investigated

except at the very beginning of the range, where the temperature provides the least

information, linear dependence was considered. The similar linear behavior of the

sensitivity coefficients over the last one-third of the thermal bridge, observed in Figure

4.2.5, can also be seen in Figure 4.2.6. As mentioned previously, this linear dependence

between the sensitivity coefficients for the highest temperatures could result in the

instability of the estimation procedure for the simultaneous estimation of the parameters,
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Table 4.2.4. Linear Dependenceof the DimensionlessSensitivity Coefficients of the
EffectiveThermalConductivityParametersfiner, tint2, flnF3, and _BF4 for the

Thermal Bridge BSCCO/FSI.

tlBr_ (+) (+) (+) (+)

/3._ (+) (+) (-) (-)

(+) (-) (+) (+)_BF3

_BF4 (+) (-) (+) (+)

even though they are not linearly dependent over the entire range investigated.

Table 4.2.4 indicates that both simultaneous estimations of the parameters flB_ with

flBr3, and flnve with fla,_4 can be studied as both pairs of parameters were found to be

globally uncorrelated over the range investigated. The uncorrelated parameters with the

highest sensitivity coefficients,/3Br_ and flBv3, were chosen for analysis.

The last phase to perform is to compute the correlation matrix according to Beck and

Arnold (1977). This computation was realized using the program KBOXEFF.FOR. Ten

sets of calculated and measured temperatures simulated with a standard deviation of 1.0

K along the thermal bridge, were utilized. The off-diagonal term of the correlation matrix

was found to be about 0.981 for all experiments conducted. This value, larger than the

limit 0.9 given by Beck and Arnold (1977), indicates that the estimates are highly

correlated and tend to be inaccurate, as anticipated. Few experiments provided final

estimates; most of the experiments performed were actually terminated because the value

of the variable o_ became too small (<0.01) in the modified Box-Kanemasu method.
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This analysisconcludedwith the impossibility of simultaneously estimating the

polynomial parameters flBrj (,/=1,4), which describe the temperature dependence of the

effective thermal conductivity of the thermal bridge BSCCO/FSI. Similar analysis

concluding to the same result, were proceeded for the four other HTS thermal bridges.

The results are recapitulated below.

polynomialequa on of effe  ve  on uc vi es

and k.q_ and the nominal values of the polynomial parameters _BYj' _l"Fj, _l"Yj and flraj

(j=1,4), are provided in Appendix E for the thermal bridges BSCCO/YSZ, YBCO/FSI,

YBCO/YSZ AND YBCO/GREEN, respectively. Table 4.2.5 displays the magnitude of

the dimensionless sensitivity coefficients of the effective thermal conductivity parameters

for the four HTS thermal bridges. Figures 4.2.7.a to 4.2.10.a show the sensitivity

coefficients larger than 10 .3 in magnitude along the length of the thermal bridges. The

sensitivity coefficients are plotted against each other in Figures 4.2.7.b to 4.2.10.b. Table

4.2.6 provides the results of the linear dependence investigation between the sensitivity

coefficients of the effective thermal conductivity parameters for the four HTS thermal

bridges. Eventually, the off-diagonal terms of the correlation matrix of the parameters

chosen to be simultaneously estimated are recapitulated in Table 4.2.7. In the estimation

procedure, instability was logically observed to increase as the off-diagonal term of the

correlation matrix approaches one.
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Table 4.2.5. Orders of Magnitude of the Dimensionless Sensitivity Coefficients of the

Effective Thermal Conductivity Parameters for the Thermal Bridges

BSCCO/YSZ, YBCO/FSI, YBCO/YSZ and YBCO/GREEN.

BSCCOrVSZ fBY, f.. f..,

(X#nr) + 10 "l 10 -1 10 -I 10 4

YBCO/FSI fm tim fire3 frr,

(X_yp) + 10 .2 1 10 a 10 .2

YBCO/YSZ fin,, fm fn,J flrr,

(Xan,) ÷ 10 -1 10-t 10-1 10 .2

YBCO/GREEN flrG, flr_2 flr_3 flrca

(Xar_) + 10 "1 1 1 10 "l
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Table 4.2.6. LinearDependenceof the Sensitivity Coefficients of the Effective Thermal

Conductivity Parameters Bjrj (j=l,3), _ll,Fj, _n,j, and fifo1 (/=1,4) for the

Thermal Bridges BSCCO/YSZ, YBCO/FSI, YBCO/YSZ and

YBCO/GREEN, respectively. ((+) indicates linear dependence; (-) indicates

no linear dependence).

_BYI

_BY2

_BY3

_ ¥FI

_ YF2

_ YF3

_ YF4

_LB¥1

(+)

(-)

(-)

_--.81¢2

(-)

(+)

(-)

(+)

(+)

(+)

(+)

(+)

(+)

_YYI

_lq2

_YY3 (+)

(+)

(+)

(-)

(-)

(+)

(+)

(-)

(-)

(-)

(+)

_.YF3

(+)

(-)

(+)

(+)

_q¢3

(+)

(-)

(+)

_ ¥F4

(+)

(-)

(+)

(+)

_YY4

(-)

(-)

(+)

grr, (-) (-) (+) (+)

(Bro)X *

gY_, (+) (+) (+) (+)

13y_2 (+) (+) (-) (-)

g_ (+) (-) (+) (+)

g_ (+) (-) (+) (+)

*Note: the parameters underlined for each thermal bridge are the uncorrelated

parameters chosen to be simultaneously estimated.
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Table 4.2.7. Off-diagonalTerms of the CorrelationMatrix of the Effective Thermal
ConductivityParametersChosento be SimultaneouslyEstimatedfor the
Thermal Bridges BSCCO/YSZ, YBCO/FSI, YBCO/YSZ and
YBCO/GREEN.

BSCCO/YSZ flBri flBrJ

flat2 0.977 0.987

_BY3 0.932

YBCO/FSI tim

flYFJ 0.982

YBCO/YSZ tim

/3n, _ 0.984

YBCO/GREEN fifo2

fifo3 0.982

4.2.2.2 Estimation of Constant Effective Thermal Conduetivities for the HTS

Thermal Bridges

As the effective thermal conductivities of the HTS thermal bridges could not be

estimated as functions of temperature, the estimation of the effective thermal

conductivities as constants was investigated. The constant effective thermal conductivities

are estimated using the modified Box-Kanemasu method. Recall that in the parameter

estimation procedure (Section 4.1.2), calculated and measured temperatures both along the

thermal bridges and at only the warm end of the thermal bridges were to be utilized. The

measured temperatures were simulated using the program YI.FOR described in Section

4.1.3. Two different estimates were therefore obtained depending on whether
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temperaturesalong the thermalbridgesor at the warm end of the thermalbridgeswere

employed.

The first subsectionis devotedto themathematicaldescriptionof thetwo different

estimatesobtainedfor the constantthermalconductivitiesof the HTS thermal bridges.

The next subsectiondiscussesthe resultsobtainedfor thesetwo estimates.

4.2.2.2.1 Mathematical Description of the Two Constant Effective Thermal
Conductivities Estimated

The procedure to estimate the effective thermal conductivities of the HTS thermal

bridges as constants uses calculated and simulated measured temperatures both along the

thermal bridges and at only the warm end of the thermal bridges, denoted by T(x) and Tt.,

respectively. The utilization of temperatures at the warm end of the thermal bridges was

specified to meet the experimental design requirement which includes two temperatures

sensors at both end of the thermal bridges only. Two different estimates are therefore

sought for the constant effective thermal conductivities, depending on whether T(x) or TL

are used.

Let us describe mathematically what these two estimates represent. The estimate,

/3rL, calculated using TL, represents the average value over the temperature range along

the thermal bridge of the temperature-dependent effective thermal conductivity, k,n(T).

Indeed, the final temperature TL is obtained using k,_(T) over the entire temperature range

along the thermal bridge. The true value, fl_,-rL' for the estimate of a constant effective

thermal conductivity calculated using Tt., can then be expressed as,
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rL

f keAr)ar (4.2.5)

 °rLr ° ,

where To is the temperature fixed at 4 K at the cold end of the thermal bridge. Figure

4.2.11 shows the true value ]3m,,r, for a distribution k,_(T) which was chosen to generally

characterize the profiles of the effective thermal conductivifies of the HTS thermal bridges

provided in Appendix E.

The mathematical description of the constant effective thermal conductivity estimated

using T(x), is more complex. In reality, this estimate, flr(_), represents a weighted average

of k,_(T) in the temperature range [To-T J. In order to define the true value for/3n, _,

/3_,r:,), consider the discretization into several intervals of the distribution k_(T) over the

temperature range [To-To] as shown in Figure 4.2.11. It is important to point out that the

limits of these intervals must coincide with the numerical temperatures obtained using

ORTHO3D in Section 3.2. This coincidence is required because in the estimation offlrfx),

the measured temperatures are simulated by adding random errors to the temperature

solution produced using ORTHO3D. In doing this curve discretization, recall that the

geometric model of the HTS thermal bridges was discretized in a hundred control

volumes along the length which provided 102 numerical values for the temperature

distribution. Therefore the curve describing k_T) should be divided in 101 (102-1)

intervals. The average value of k,_(T) over the first interval [To-T(2)], is denoted by fllrrx)

as seen in Figure 4.2.11; the average value of k,/r(T) over both the first and second

intervals, that is on the range [To-T(3)], is denoted by fl2m); eventually, _101r(_) denotes
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the average value of k,_(T) over the entire range investigated [To-TL]. One can notice that

[3101nx)=[3_r L. These different means [3inx) (i=1,101), are expressed as,

Tq)

f k A73ar (4.2.6)
ro

T(i)-T o

The true value, flm,_T(x)' for the estimate of a constant effective thermal conductivity

calculated using T(x), can now be defined as the weighted average of the different means

flir¢x), and described as,

101

E[3ir(xc4rea(i)

i=1 (4.2.7)
Bt,_r(_) = 1oi

_Area(i)
i=1

where Area(i) is the area under the curve k,z(T) over the temperature range [To-T(i)].

As described in Figure 4.2.11, the value for flm,_r0,)is expected to be less than the

value for fl.,_,T L, because all the means Oim) are less (or equal for OlOlm)) than _,_rL"

This behavior should be obtained for the true estimates of the constant effective thermal

conductivities of the HTS thermal bridges because the distribution k,n(T) in Figure 4.2.11

generally characterizes the profiles of the effective thermal conductivities of the HTS

thermal bridges. The true estimates, /3_,_,T(x), and [3_,_r L, were computed for each HTS

thermal bridge using the program KEFF.FOR (Appendix K).
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4.2.2.2.2 Constant Effective Thermal Conductivity Estimates

The results obtained for the estimated constant thermal conductivities of the HTS

thermal bridges are presented and discussed in this subsection. These results include the

constant thermal conductivities, Bz_x7 and /_rL, estimated using temperatures along the

thermal bridges and at only the warm end of the thermal bridges, respectively. Both

thermal properties were estimated using the parameter estimation program

KBOXEFF.FOR. The calculated temperatures, T(x) and TL, are governed by a simple

//

T(x)- q -x+4. (4.2.8)

Br_)

The measured temperatureswere simulatedby adding normally distributedrandom errors

with three differentstandard deviations(0.I,0.5 and 1.0 K) to the temperature values

obtained using ORTHO3D. Recall that I02 numerical values for the temperature

distributionwere computed along the thermal bridges. Therefore, in the case of

temperaturemeasurements along the thermal bridges,I02 data pointscould be simulated.

Since no restrictionexistsfor the temperaturemeasurement number at the warm end of

the thermal bridges in thiscase, 500 data were simulated for each experiment. Ten

simulated experiments were performed for each standard deviation,which generated a

totalof thirtyexperiments foreach case. This was performed using the program YI.FOR.

The estimates,/3nx_and _rL,obtained foreach experiment are given in Tables 4.2.8

to4.2.12for thethermal bridgesBSCCO/FSI, YBCO/FSI, BSCCO/YSZ, YBCO/YSZ and

YBCO/GREEN, respectively.For each standard deviationof measurement errors,the
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meanvalue of the estimates is provided, along with its 95-percent confidence interval.

The 95-percent confidence intervals were calculated from

/_ __ t'a2s , (4.2.9)

m

where bi and s are the mean and standard deviation of the estimate, respectively, N r is

the number of data points used, and t_ is the value of the t distribution with (Np-1)

degrees of freedom and a/2 confidence region (Walpole and Myers, 1978). Constant

effective thermal conductivities were also estimated using the temperatures directly

obtained from ORTHO3D for the measured temperatures, resulting in the estimates flortx)

and florL. The temperatures obtained from ORTHO3D are called "exact" data because

these temperatures are taken as reference in this research. The true estimates, flt,_r(.)and

flt,,,er,, described in the previous subsection, are supplied for each thermal bridge.

Eventually, the percentage difference between both the mean value of each standard

deviation and the estimate obtained using exact data, and between the estimate using exact

data and the true estimate, is given.

In the analysis of Tables 4.2.8 to 4.2.12, general results can be commented for the

five HTS thermal bridges. First, as anticipated in Section 4.2.2.2.1, larger values are

obtained for the estimation of the constant effective thermal conductivities at the warm

end of the thermal bridges; that is flrL>flrtx_.

Second, for all experiments conducted, the estimates using exact data, flortx) and florL,

fall within the 95-percent confidence intervals of the respective mean values. This result

ensures that reasonable estimates have been obtained and allows for the validation of the
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Table 4.2.8. Estimated Constant Effective Thermal Conductivities for the Thermal

Bridge BSCCO/FSI.

Simulated

Experiment

2

4

Standard Deviation of Measurement Errors (s)

Exact Data (s--O)

0.1 0.5

fir0,)

0.2696

0.2696

0.2696

0.2695

0.2696

0.2695

0.2695

0.2696

0.3153

0.3153

0.3153

0.3153

0.3153

0.3153

0.3153

0.3152

flr(_)

0.270

0.2697

0.2697

0.2696

0.2697

0.2693

0.2694

0.2698

flrL

0.3154

0.3152

0.3153

0.3154

0.3153

0.3152

0.3154

0.3151

1.0

t3rL

0.2702

0.2699

0.270

0.2697

0.2698

0.2690

0.3155

0.3151

0.3154

0.3154

0.3154

0.3151

0.3155

0.3149

0.2693

0.2700

9 0.2695 0.3153 0.2696 0.3154 0.2697 0.3155

10 0.2695 0.3153 0.2695 0.3153 0.2695 0.3154

Mean 0.2695 0.3153 0.2696 0.3153 0.2697 0.3153

±2.6E-5 ±1.5E-5 ±1.3E-4 ±7.3E-5 ±2.6E-4 ±1.5E-4!

Difference (%) 0.007 0.001 0.033 0.007 0.067 0.013

mean/exact data

Bor(x) BorL

0.2695 0.3153

0.04

0.3152

2.61

0.2627

Difference (%)
exact data/

true estimate

True Estimate
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Table 4.2.9. Estimated Constant Effective Thermal Conductivities for the Thermal

Bridge YBCO/FSI.

Simulated

Experiment

1

2

3

4

5

6

7

8

9

10

Mean

Difference (%)

mean/exact data

Exact Data (s=0)

Difference (%)

exact data/

true estimate

True Estimate

Standard Deviation of Measurement Errors (s)

0.1 0.5 1.0

0.4564 0.5214

0.4563 0.5213

0.4563 0.5214

0.4563 0.5214

0.4563 0.5214

0.4562 0.5213

0.4562 0.5214

0.4564 0.5213

0.4563

0.4563

0.4563

±4.5E-5

0.007

flor(x)

0.4563

2.26

0.5214

0.5214

0.5214

+_2.4E-5

0.001

flor L

0.5214

0.11

0.4462 0.5277

#rtx) #rL

0.4568 0.5215

0.4566 0.5213

0.4566 0.5215

0.4564 0.5215

0.4565 0.5215

0.4558 0.5212

0.4561 0.5215

0.4567 0.5211

0.4564 0.5216

0.4563 0.5215

0.4564 0.5214

:1:2.3E-4 ±1.2E-4

0.033 0.007

0.4574 0.5217

0.4570 0.5211

0.4569 0.5216

0.4566 0.5217

0.4568 0.5216

0.4553 0.5211

0.4559 0.5217

0.4572 0.5208

0.4565 0.5218

0.4563 0.5216

0.4566 0.5215

±4.5E-4 ±2.4E-4

0.067 0.013
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Table 4.2.10. Estimated Constant Effective Thermal Conductivities for the Thermal

Bridge BSCCONSZ.

Simulated

Experiment

Standard Deviation of Measurement Errors (s)

0.1 0.5 1.0

fir(x) /It L fir00 /_rL

1 0.7046 0.7602 0.7062 0.7605

2 0.7045 0.7601 0.7055 0.7597

3 0.7045 0.7601 0.7055 0.7604

4 0.7044 0.7602 0.7049 0.7605

5 0.7045 0.7601 0.7052 0.7604

6 0.7042 0.7601 0.7028 0.7596

7 0.7043 0.7602 0.7037 0.7606

8 0.7045 0.7600 0.7058 0.7593

9 0.7044 0.7602 0.7047 0.7607

10 0.7044 0.7601 0.7044 0.7604

Mean 0.7044 0.7601 0.7049 0.7602

+7.3E-5 :L3.5E-5 +7.3F,-4 +3.5E-4

Difference (%) 0.007 0.001 0.067 0.013

mean/exact data

flor(_)

0.7044

2.23

0.6890

Exact Data (s--O)
fl0rL

0.7601

0.06

0.7053 0.7603

0.7050 0.7599

0.7049 0.7603

0.7047 0.7603

0.7048 0.7602

0.7036 0.7598

0.7040 0.7603

0.7051 0.7597

0.7046 0.7604

0.7044 0.7603

0.7046 0.7602

.'L3.7E-4 +1.8E-4

0.033 0.007

0.7606

Difference (%)

exact data/

true estimate

True Estimate
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Table 4.2.11. Estimated Constant Effective Thermal Conductivities for the Thermal

Bridge YBCO/YSZ.

Simulated

Experiment

2

Standard Deviation of Measurement Errors (s)

0.1 0.5

0.8919

0.8918

fir L

0.9666

0.9665

fl/-(_) fir L

0.9671

1.0

0.8940

0.8931 0.9661

0.8930 0.96703 0.8918 0.9666

4 0.8917 0.9666 0.8923 0.9671

5 0.8918 0.9666 0.8927 0.9669

6 0.8914 0.9665 0.8897 0.9659

7 0.8916 0.9666 0.8908 0.9671

8 0.8918 0.9665 0.8935 0.9655

9 0.8917 0.9667 0.8921 0.9673

10 0.8916 0.9666 0.8917 0.9670

Mean 0.8917

±9.3E-5

Difference (%) 0.007

mean/exact data

Exact Data (s=0)

Difference (%)

exact data/

true estimate

True Estimate

0.9666

+4.5E-5

0.001

florL

0.9666

0.10

0.9656

0.8928 0.9669

0.8924 0.9664

0.8923 0.9668

0.8920 0.9668

0.8922 0.9668

0.8907 0.9663

0.8912 0.9669

0.8926 0.9661

0.8919 0.9670

0.8917 0.9668

0.8920 0.9667

±4.6E-4 ±2.2E-4

0.033 0.007

flOT(x)

0.8917

0.8923

±9.3E-4

0.067

2.36

0.9667

±4.5E-4

0.013

0.8710
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Table 4.2.12.Estimated Constant Effective Thermal Conductivities for the Thermal

Bridge YBCO/GREEN.

Simulated

Experiment

2

3

4

Standard Deviation of Measurement Errors (s)

0.1

Exact Data (s--O)

4.5154

4.5149

4.5149

4.5145

4.8459

4.8454

4.8459

4.8460

0.5 1.0

fir00

4.5261

4.5217

4.5212

4.5118

flrL

4.8484

4.8433

4.5201 4.8470

4.5180 4.8445

4.5177 4.8466

4.5160 4.8470

4.5169 4.8465

4.5092 4.8440

4.5120 4.8470

4.5189 4.8430

4.5153 4.8476

4.5142 4.8466

4.5158 4.8460

:!:2.4F_,-3 +l.lE-3

0.033 0.007

4.8475

4.8483

5 4.5147 4.8458 4.5196 4.8474

6 4.5132 4.8453 4.5041 4.8424

7 4.5138 4.8459 4.5099 4.8484

8 4.5151 4.8451 4.5236 4.8403

9 4.5144 4.8461 4.5165 4.8496

10 4.5142 4.8459 4.5143 4.8476

Mean 4.5145 4.8457 4.5175 4.8463

±4.8E-4 ±2.2E-4 ±4.7E-3 ±2.2E-3

Difference (%) 0.007 0.001 0.067 0.013
mean/exact dam

4.5142 4.8457

Difference (%)

exact data/ 2.41 0.03

true estimate

True Estimate

4.84704.4080
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estimationprocedure.

Larger percentagedifferenceswith respectto the estimatesfrom exact data are

obtained for the meanvaluesof the estimates]3r_x), which indicates that the thermal

parameter/3m_ is more difficult to estimate than the thermal parameter ]3rL. This occurs

because, based on the sensitivity analysis, the most temperature information for the

parameter estimation is provided at the warm end of the thermal bridges. Indeed, recall

that the sensitivity coefficient magnitudes have been shown in Sections 4.2.1 and 4.2.2.1

to be maximum at the warm end of the thermal bridges; furthermore, note that parameters

estimated from data with large sensitivity coefficients are generally more accurate than

parameters estimated from data with small sensitivity coefficients (Scott, 1994).

Therefore, the estimation of /3m) is more sensitive to experimental errors. This result is

of importance in this research as it confn'ms the placement of a temperature sensor at the

warm end of the thermal bridges in the preliminary experimental design.

As shown in Tables 4.2.8 to 4.2.12, the addition of random measurement errors with

standard deviation of 0.1, 0.5 and 1.0 K, induces an overall decrease in the accuracy of

the estimates, with an associated increase in the corresponding 95-percent confidence

intervals. The maximum percentage difference with respect to exact data is contained in

the mean values of the estimates obtained using measurement errors with a standard

deviation of 1.0 K; this results for the five HTS thermal bridges in percentage differences

of 0.013 percent for the estimates /3rL and in percentage differences ranging from 0.067

to 0.073 percent for the estimates flr¢x_. The small values for these percentage differences

confirm that reasonable estimates have been obtained.
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A comment should be added about the influence of the initial estimate in the

parameter estimation method, as it bears on the performances of the procedure. Indeed,

when the initial estimate was chosen as the estimate using exact data, convergence was

reached in no more than two iterations; whereas the choice of a poor initial estimate

resulted in the increase of the number of iterations to reach convergence.

Looking now at the percentage differences between the estimates using exact data

and the true estimates, one can see that the estimates flOrLclosely match the true estimates

flt,_rL with a maximum percentage difference of O. 11 percent occurring for the thermal

bridge YBCO/FSI. This result points out the reliability of the estimates obtained at the

warm end of the thermal bridges. The percentage differences between fl_,,_ and/3,_r_x)

are however larger, with a maximum difference of 2.61 percent occurring for the thermal

bridge BSCCO/FSI. Percentage differences between flo'n_,; and flm,,,rr_,) were actually

expected to be higher than those obtained between flOTLand fltn_TL. In an attempt to

explain these higher percentage differences, recall that in the computation of the value

/3_,,r_ in Section 4.2.2.2.1, the discretization of the distribution k¢(T) was restricted to

101 intervals. This restriction was required so that the limits of the intervals coincide

with the numerical temperature values produced using ORTHO3D. From this, one can

expect that the use of more data points along the thermal bridges should help obtaining

closer values for flom_ and fl,,_rt_.

Finally, the values of the constant effective thermal conductivities estimated for each

thermal bridge were compared. This comparison shows that the smallest values for tim)

and fir Lare logically obtained for the thermal bridge BSCCO/FSI which displays the less
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heat load on the cryogen,or in otherwords,which conductsheatthe less. In addition,

the proportionality between the constant effective thermal conductivities/3OT L, estimated

using exact data, is found to correspond to the proportionality between the heat loads on

the cryogen, Qco,_, provided in Table 3.2.1, by the FITS thermal bridges. Using the

thermal bridge BSCCO/FSI (BF) as a reference, Table 4.2.13 displays the ratios /3°Td

 or sF
and -Qcondj , where j denotes the four other HTS thermal bridges. As one can see, for

Q_o,_F

each thermal bridge, the same value is obtained for both ratios. This result was expected

because /30rLrepresents the estimate using exact data of the average value over the

temperature range [To-T L] of the HTS thermal bridge effective thermal conductivity. The

excellent agreement between both ratios not only demonstrates the accuracy of the

estimation of the average values over the temperature range [To-T L] of the HTS thermal

bridge effective thermal conductivities, but also shows that this estimation is an effective

way to demonstrate the respective heat loads on the cryogen.

Table 4.2.13. Proportionality Between Both the Constant Effective Thermal Conductivities

Estimated at the Warm End of the HTS Thermal Bridges Using Exact Data

and the Respective Heat Loads on the Cryogen.

BSCCO/ YBCO/ BSCCO/ YBCO/ YBCO/

FSI FSI YSZ YSZ GREEN

florL (W/m-K) 0.3153 0.5214 0.7601 0.9666 4.8457

Qcou (W) 2.44E-4 4.03E-4 5.89E-4 7.48E-4 3.74E-3

florL/florLBt: 1 1.65 2.41 3.07 15.37

Q_oJQcondsr 1 1.65 2.41 3.07 15.33

133



CHAPTER 5

Conclusions and Summary

The focus of this study was on the analysis of a space experimental design for high-

T c superconductive thermal bridges (Lee, 1994). The primary objectives were to verify

that the sources of heat transfer (electrical and radiative heat sources) neglected in the

preliminary conductive analysis of the thermal bridges by Lee were indeed negligible, and

to develop a methodology for the estimation as temperature dependent of the thermal

conductivities of the HTS thermal bridges. The following conclusions were drawn based

on the results obtained.

5.1 Electrical and Radiative Heat Sources

In this investigation, the electrical and radiative heat sources on the thermal bridges

were evaluated in order to determine whether or not these sources contribute significantly

on the heat load on the cryogen. The evaluation of the radiative heat source was

performed only for the HTS thermal bridges; therefore, the cryogenic heat load generated
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by the manganinthermal bridge is a conservativeresult. The electrical heat source

createdin themanganinwiresby theelectronicsignalsfrom theIR detectorswasdirectly

implementedinto the conductivemodelof the manganinthermalbridge. The radiative

heatsourceon theHTS thermalbridgeswasdeterminedby performinga separateradiant

interchangeanalysiswithin ahigh-Tosuperconductorhousingchamberin theexperimental

design.

5.1.1 Conclusions for the Electrical Heat Source

The finite difference program ORTHO3D used to construct the conductive

mathematical models of the thermal bridges allowed for the analysis of a volumetric heat

source generated in the geometric domain. The Joule heating term created by the

electrical current was therefore incorporated as a volumetric heat source into the

manganin conductive model. The following conclusions can be drawn from the results:

1) The electrical heat source in the manganin wires does not contribute significantly on

the cryogenic heat load.

2) The temperature distribution along the manganin wires is not affected by the

electrical heat source.

The analysis of the

performed in two phases.

5.1.2 Conclusions for the Radiative Heat Source

radiant interchange within a HTS housing chamber was

First the distribution factors were computed using the Monte-

Carlo method and then the distribution factor results were used in calculating the radiative
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heat load on the HTS thermal bridges. Due to the geometric complexity, the HTS

thermal bridges were approximated as only the substrate materials. Because the radiative

properties of the specific substrates used in this research (fused silica, yttrium stabilized

zirconia and green phase) could not be found in the literature, these properties had to be

predicted. This prediction could be, however, responsible for variations between the

actual and the calculated radiative heat load on the HTS thermal bridges. Three different

radiative heat loads, based on geometric considerations, were compared to the conductive

From the results obtained, the following conclusions can beheat load on the cryogen.

made:

1)

2)

The solution for the distribution factors is converged and symmetric.

The larger the reflectivity of the substrate material, the lower the distribution factors

to the substrate and the lower the radiative heat load on the substrate.

3) The lower the reflectivity of the housing chamber material, the lower the distribution

factors to the substrate and the lower the radiative heat load on the substrate.

4) The radiative heat load on the bottom of the substrate from the entire enclosure is

negligible for the GREEN substrate but not for the FSI and YSZ substrates.

5) The radiative heat load on the bottom end of the substrate from the top end

represents less than 4 percent of the conductive heat load on the cryogen for the

three substrates (FSI, YSZ and GREEN).

6) The radiative heat load on the entire substrate from the entire enclosure is negligible

for all three substrates studied.

7) The radiative heat load on surface 4 from surface 5 represents less than 2 percent of
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the conductive heat load on the cryogen for the three substrates.

Considering that conclusions 6 and 7 provide the best information for the relevance of

radiation on the cryogenic heat load, the radiative heat source on the HTS thermal bridges

can then be reasonably neglected in the conductive analysis.

The following conclusion can also be made when examining the combined results

of the evaluation of the electrical and radiative heat sources:

1) The conductive heat loads on the cryogen and the temperature distributions along the

thermal bridges obtained in the conductive analysis (Scott and Lee, 1994) are valid.

5.2 Thermal Conductivity Estimation Methodology

A methodology was presented for the estimation of the thermal conductivities of the

individual HTS thermal bridge materials and the effective thermal conductivities of the

composite HTS thermal bridges, as functions of temperature. This methodology included

a sensitivity analysis and the demonstration of the estimation procedure using simulated

data with added random errors. The estimation procedure used was the modified Box-

Kanemasu method. The following conclusions can be drawn from the results obtained:

1) The parameters describing the material thermal conductivities as functions of

temperature in a HTS thermal bridge are correlated and cannot be estimated

simultaneously.

2) The parameters describing the HTS thermal bridge effective thermal conductivities

as functions of temperature are correlated and cannot be estimated simultaneously.
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3) The placementof a temperature sensor at the warm end of the thermal bridges

provides the most information for the parameter estimation.

Based on the two first conclusions, the effective thermal conductivities of the HTS

thermal bridges were analyzed to be estimated as constants. The estimation procedure

was demonstrated using simulated and exact data both along the thermal bridges and at

the warm end of the thermal bridges to account for the location of the temperature sensor

in the experimental design. The results obtained allow for the following conclusions:

1) The estimation procedure using simulated data resulted in good agreement between

the estimated and predicted constant effective thermal conductivities.

2) The estimation of the constant effective thermal conductivities is more sensitive to

measurement errors using simulated data along the thermal bridges than at the warm

end of the thermal bridges.

3) The estimates for the constant effective thermal conductivities obtained using exact

data at the warm end represent with accuracy the average values over the

temperature range along the thermal bridges of the temperature dependent effective

thermal conductivities.

4) The proportionality between the estimates for the constant effective thermal

conductivities obtained using exact data at the warm end exactly corresponds to the

proportionality between the heat loads on the cryogen by the respective HTS thermal

bridges. The estimation at the warm end of the thermal bridges of the HTS thermal

bridge effective thermal conductivities as constants is then an effective way to

demonstrate the respective cryogenic heat loads.
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CHAPTER 6

Recommendations

From the analysis of the conclusions drawn in chapter five, recommendations can be

deduced for the two majors areas of this research study, namely the heat transfer analysis

of the experimental design and the thermal conductivity estimation of the HTS thermal

bridges.

In order to minimize the radiative heat source in the HTS housing area the use, for

only surfaces l, 2 and 3 of the housing chamber (see Figure 3.3.2), of a material with

lower reflectivity than the reflectivity of the currently used pure copper is suggested. This

would allow to minimize the radiative heat load on the HTS thermal bridges and to

maintain the radiative heat load on surface 4 from surface 5 negligible. The choice for

this material would also have to meet the specific requirements set for the housing

chamber with respect to the experimental design.

To account for the radiative properties of the superconductors, the HTS leads should

be incorporated on the substrate materials in the radiation analysis.

Finally, with the primary goal to compare the performance between the HTS and the
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manganinthermalbridges,a radiation analysis needs to be performed on the manganin

thermal bridge.

The heat transfer through the HTS thermal bridges does not account for any heat

contribution from the mechanical supports as these are currently being designed to have

no contact with the bridges in space. However, if the structural analysis of the support

mechanisms results in an effective contact in space between the supports and the bridges,

then the heat transfer model of the HTS thermal bridges would have to be reconsidered.

The estimates for the constant effective thermal conductivities of the HTS thermal

bridges obtained using exact data at the warm end represented with accuracy the average

values over the temperature range along the thermal bridges of the temperature dependent

effective thermal conductivities. The investigation of different temperatures, lower than

80 K, at the warm end (with the cold end kept fixed at 4 K) would provide an efficient

way to determine different average values of the temperature dependent effective thermal

conductivities for different temperature gradients between the ends of the thermal bridges.

The objective would be to build a model describing the average values of the effective

thermal conductivities as functions of the temperature gradient between the ends of the

thermal bridges. Note that these average values would be expected to be more accurate

as the temperature would get closer to 80 K and hence provide more information for the

parameter estimation. An interpolation procedure would need to be implemented to

obtain the distribution of the effective thermal conductivities with respect to the

temperature along the thermal bridges (ranging from 4 to 80 K) from the distribution of

the average values with respect to the temperature gradient between the ends of the
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thermal bridges (ranging from 0 to 76 K). Such experiment to vary the temperature at

the warm end from 4 to 80 K could be performed by programming the heater (see Section

3.1) with a step function, and estimating the thermal conductivities at steady-state

conditions throughout the interval from 4 to 80 K.
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Appendix A

The Fortran Subroutine HTS.FOR

This subroutine, HTS.FOR, was written as the adapt part of the program ORTHO3D

(provided at the end of the subroutine). HTS.FOR is used to determine the temperature

distribution and the cryogenic heat load for the five HTS thermal bridges.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE ADAPT

c

c HP f77 version, 3-D dp Iso version - DJN

C

c.$noextensions
C ...................................................................

C ..... STEADY CONDUCTION IN A 3D HALF HTS THERMAL BRIDGE .....

C with isotropic gamma

C

C ..... Temperature Detern_nation

C Subroutine HTS.FOR, written by Sandrine Garcia, 1994.
C .....................................................................

INCLUDE 'common3d.f

DIMENSION T(NI.NJ,NK)

EQUIVALENCE (F(I,I,I,I),T(I.I.I))

ENTRY GRID

C

C

C

C

HEADER='HALF YBCO/YSZ - L=152.4mm - Q'
PRINTF=T

PLOTF ='output.pr (not set up for 3D plots yet)

set geometric dimensions
rL = 0.1524<!0
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c if there is a buffer layer (the substrate is FSI)

cog thk2--0.0000003d0

c if there is no buffer layer

thk2 = 0.0d0

rlsuperc = 0.003048d0
el = 0.0001524d0

e2 = 0.0000508d0

a = 0.003045d0
C

C

C

C

zoned grid method

set x, y and z zones

NZX= 1

XZONE(1) = rL

NCVX(I) = 100

NZY = 2

YZONE(1) = a

NCVY(1) = 4

YZONE(2) = rlsuperc/2.d0

NCVY(2) = 3

NZZ = 2

c if the substrate is FSI, add 1 CV for the buffer layer

cog NZZ= 3

ZZONE(1) = el

NCVZO) = 3
cff there is no buffer layer

ZZONE(2) = e2

NCVZ(2) = 2

c if there is a buffer layer

cog ZZONE(2) = thk2

cog NCVZ(2) = 1

cog ZZONE(3) = e2

cog NCVZ(3) = 2
C

CALL ZGRID

RETURN

ENTRY BEGIN

C

TITLE(l) =' TEMPERATURE'

KSOLVE(1 )= 1

KPRINT( 1 )=0

KPLOT(1) --0

KSTOP --0

C

c set maximum number of outer iterations

LAST = 50

c set minimum number of outer iterations

ITRMIN = 8

c set convergence parameter

epsi = l.d-5

c set initial temperature (K)

DO 100 K=I,NI

DO 100 J=I,MI
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+

+

4-

.4-

+

+

100

C

T(I,J,K) = 4.d0

DO 100 I=2,L1

T(LJ,K) = 4.7336407d0 + 2376.7446289d0*X(I)
- 85404.94531 d0*X(I) *'2

+ 2106631.25d0*X(I)**3

- 29870884.dO*X(I)**4

+ 238106752.dO*X(I)**5

- 991233280.dO*X(I)**6

+ 1674745088.dO*X(I)**7
CONTINUE

c set thermal conductivity coefficients
Bgl = 0.3558d0

C

C

C

C

C

Bg2 = 0.07173d0

Bg3 = 0.01066d0

Bg4 = -3.706d-4

Bg5 = 4.814d-6

Bg6 = -2.839d-8

Bg7 = 6.37d-11

Byl = 0.4464d0

By2 = -0.002426d0

By3 -- 9.229d-4

By4 = -2.793d-5

By5 = 3.772d-7

By6 = -2.395d-9

By7 = 5.839d-12

Bfl = 0.01565d0

Bf2 = 0.002761d0

Bf3 = 1.561d-4

Bf4 = -3.076d-6

Bf5 = 3.403d-8

Bf6 = -2.009d-10
Bf7 = 4.826d-13

Bzl = -0.2045d0

Bz2 = 0.1159d0

Bz3 = -O.001041dO

Bz4 = -2.761d-5

Bz5 = 6.671d-7

Bz6 = -5.127d-9
Bz7 = 1.367d-11

Bybcol = 0.1567d0

Bybco2 = 0.01403d0

Bybco3 = 0.007463d0

Bybco4 = -2.51d-4

Bybco5 = 3.437d-6

Bybco6 = -2.201d-8

Bybco7 = 5.45d-ll

Bbsccol = 0.143d0

Bbscco2 = 0.05445d0

Bbscco3 =-0.003517d0
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Bbscco4 = 1.243d-4

Bbscco5 = -2.1d-6

Bbscco6 = 1.665d-8

Bbscco7 = -5.035d-11

C

c set input beat flux (W/m2)

c - if the thermal bridge is YBCO/GREEN

Qyg = 2415.429d0

c - if the thermal bridge is YBCO/YSZ

Qyy = 483.237d0

c - if the thermal bridge is BSCCO/YSZ

Qby = 380.095d0
c - if the thermal bridge is YBCO/FSI

Qyf = 260.383d0

c - if the thermal bridge is BSCCO/FSI

Qbf = 157.302d0

C

QOU'I_ = 0.D0
RETURN

ENTRY OUTPUT

C

20

C

210

-6

220

+

2OO

C

QIN = 0.D0

Qotrr = 0.D0
DO 20 J=2,M2
DO 20 K=2,N2

QIN = QIN + YCV(J)*ZCV(K)*FLUXLI(J,K,1)

QOUT = QOUT + YCV(J)*ZCV(K)*FLUXII(J,K,1)
CONTINUE

DO 200 IUNIT=IUI,IU2

IFOTER.EQ.0) WRITEOUN1T,210)

FORMAT(2X,TI'ER',3X,'T(LI,M2,11)',5X,'T(LI,M2,12)',9X,'QIN',

13X,'QOUT,9X,'NTC(1)')

WRITE(IUNIT,220)ITER,T(LI,M2,1 I),T(LI,M2,12),QIN,QOUT,NTC(1)

FORMAT(2X,13,3X, IPEIO.2,5X, IPEIO.2,7X,IPEIO.3,TX, IPEIO.3,

7X,I2)

CONTINUE

c create a convergence criterion

IF (ITER.LT.ITRMIN) RETURN

DIFF = ABS((QOUT-QOUT0)/(QOUT+SMALL))

QOOT0=QOUT
IF (DIFF.LE.epsi.OR.ITER.EQ.LAST) THEN

C

c calculate overall energy balance

H'I_AL = QIN + QOUT

EBAL = ABS(H'I_AL/QIN)

DO 40 IUNIT=IUI,IU2

WRITE(IUNIT,50)EBAL

FORMAT(/,2X,'EBAL', IPE11.3)

CONTINUE

50

40

C

C Record temperature solution on specific t'de

open(unit=3,file='yy. 100')
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C

do i=l,Ll

write(3,'(E18.5)')T(i,M2.11)
enddo

close(3)

CALL PRINT

close (iu2)
KSTOP=I

ENDIF

RETURN

ENTRY PHI

C

c set conductivities

DO 300 K=2,N2

DO 300 J=2,M2

DO 300 I=2,L2
C

IF (Z(K).LE.el) THEN

c if the substrate is the GREEN PHASE :

ccc GAM(I,J,K) = Bgl + Bg2*T(IJ,K)

ccc + + Bg3*T(I,J,K)**2

ccc + + Bg4*T(I,J,K)**3

ccc + + Bg5*T(I,J,K)**4
ccc + + Bg6*T(I,J,K)**5

ccc + + BgT*T(I,J,K)**6
c if the substrate is YSZ :

GAM(I,J,K) = Byl + By2*T(I,J,K)

+ + By3*T(I,J,K)**2

+ + By4*T(LJ,K)**3

+ + By5*T(I,J,K)**4

+ + By6*T(LJ,K)**5

+ + ByT*T(I,J,K)**6
c if the substrate is FSI :

ccc GAM(I,J,K) -- Bfl + Bf2*T(LJ,K)

ccc + + Bf3*T(I,J,K)**2
ccc + + Bf4*T(I,J,K)**3

ccc + + BfS*T(LJ,K)**4

ccc + + Bf6*T(I,J,K)**5

ccc + + BfT*T(I,J,K)**6
ELSE

C

IF (Z(K).GT.eI.AND.Y(J).LT.a) GAM(I,J,K) = O.dO
C

c if there is a buffer layer (the substrate is FSI)

ccc IF CL(K).GT.e I.AND.Z(K).LE.(e I +thk2).AND.
ccc + Y(J).GE.a) THEN

ccc GAM(I,J,K) = Bzl + Bz2*T(I,J,K)
ccc + + Bz3*T(LJ,K)**2

ccc + + Bz4*T(I,J,K)**3

ccc + + BzS*T(I,J,K)**4

ccc + + Bz6*T(I,J,K)**5

ccc + + BzT*T(I,J,K)**6
ccc ENDIF

C
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IF (Z(K).GT.(el +thk2).AND.Z(K).LE.(e I +thk2+e2).AND.

+ Y(J).GE.a) THEN

c if the superconductor is YBCO :

GAM(I,J,K) = Bybcol + Bybco2*T(IJ,K)
+ + Bybco3*T(IJ,K)**2

+ + Bybco4*T(IJ,K)**3

+ + Bybco5*T(I,J,K)**4

+ + Bybco6*T(IJ,K)**5

+ + Bybco7*T(I,J,K)**6

c if the superconductor is BSCCO :

CCC

CCC 4-

CCC +

CCC +

CCC 4-

CCC +

ENDIF

C

300

C

GAM(I,J,K) = Bbsccol + Bbscco2*T(LJ,K)
+ Bbscco3*T(I,J,K)**2

+ Bbscco4*T(IJ,K)**3

+ Bbscco5*T(I,J,K)**4

+ Bbscco6*T(I,J,K)**5

+ Bbscco7*T(I,J,K)**6

ENDIF

CONTINUE

c set boundary conditions

DO 310 K=2,N2

DO 310 J=2,M2

KBCLI(J,K) = 2

c - for the subslrate

C

C

CCA_

CCC

ccC

CCC

C

C

310

C

320

C

4-

IF (Z(K).LE.el) THEN

FLXCLI(J,K) = Qyy

ELSE

- ff there is a buffer layer
IF (y(J).GE.&ANDI(K).GT.e 1.ANDI(K).LE.

+ (el+thk2)) THEN

FI_XCLI(J,K) = Qyf

ENDIF

- for the superconductor

IF (y(J).GE.a.AND.Z(K).GT.(e I +thk2).AND.Z(K).LE.

(e I +thk2+e2)) THEN

FLXCLI(J,K) = Qyy

ENDIF

ENDIF

CONTINUE

DO 320 K=2,N2

DO 320 I=2,L2

KBCJI(I,K)=2

KBCMI(I,K)=2

CONTINUE

DO 330 J=2,M2

DO 330 I=2,L2

KBCKI(I,J)=2

KBCN l(l,J)=2
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330 CONTINUE

C

RETURN

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

PROGRAM ORTHO3D
,

* Control Volume Method solution of three-dimensional, isotropic
* beat conduction
i

* User portion of code contained in layer*.f
* layer3d.f - standard user subroutine
,

* RS/6000 version - double precision
,

* Program structure similar to that detailed in

* "Computation of Conduction and Duct Flow Heat Transfer",

* S.V. Patankar, Maple Grove, MN: Innovative Research, Inc.
$

_***$****** $*******I*$*****$*_t*$*I$_$***$* $$_$_, $I*$$$$_***_$**I**$$*****

INCLUDE 'common3d.f

C

C

10

C

CALL DEFLT

CALL GRID

CALL READY

CALL BEGIN

CONTINUE

c start iteration of outer loop
CALL OUTPUT

c check to see if convergence has occured
IF(KSTOP.NE.0) STOP 'HTSISOX.F done'
CALL HEART

GO TO 10

C

STOP

END

*********************************************************************

c include other subroutines in invariant part
INCLUDE 'defrd3d.f

INCLUDE 'heart3d.f

INCLUDE 'solve3d.f

INCLUDE 'tools3d.f
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Appendix B

The Fortran Subroutine MANG.FOR

This subroutine, MANG.FOR, was written as the adapt part of the program

ORTHO3D (provided at the end of the subroutine HTS.FOR in appendix A).

MANG.FOR is used to determine the temperature distribution and the cryogenic heat load

for the manganin thermal bridge.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE ADAPT

c

c HP f'77 version, 3-D dp Ortho version - DJN

C

c,$noextensions

C .......................................................................

C ..... STEADY CONDUCTION IN A 3D FOURTH MANGANIN THERMAL BRIDGE .....

c with isotropic gamma
C

C ..... Temperature Determination
C Subroutine MANG.FOR, written by Sandrine Garcia, 1994.

C .......................................................................

INCLUDE 'common3d.f

DIMENSION T(NI,NJ,NK)

EQUIVALENCE (F(I,I,I,I),T(I,I,1))

ENTRY GRID

C
HEADER=' FOURTH MANGANIN - L=101.6mm - Q+g'

PRINTF='mgg2.pr'

C PLO'IT ='output.pl' (not set up for 3D plots yet)
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C

c set geometric dimensions
rL = 0.1524d0

rimang = 0.0005491747d0

rlkapt = 0.0000017436298d0
C

c zoned grid method

c set x, y and z zones
NZX= 1

XZONE(1) = rL
NCVX(1) = I00

C

C

C

NZY = 2

YZONE(1) = rlkapt

NCVY(1) = 1

YZONE(2) = rlmang/2.d0

NCVY(2) = 4

NZZ=2

ZZONE(1) = rlkapt

NCVZ(1) = 1

ZZONE(2) = rlmang/2.d0
NCVZ(2) = 4

CALL ZGRID

RETURN

ENTRY BEGIN

C

C

¢

C

C

C

¢

+

+

+

+

100

C

TrI'LE(I) =' TEMPERATURE'

KSOLVE(I)= 1

KP_(l)=l

KPLOT(1 ) ---0

set maximum number of outer iterations

LAST = 100
set minhnum number of outer iterations

1TRMIN = 30

set convergence parameter

epsi = l.d-5

set initial temperature (K)
DO 100 K=I,N1

DO 100 J=I,MI

T(IJ,K) = 4

DO 100 I=2,LI

T(I,J,K) = 4.7336407d0 + 2376.7446289d0*X(I)

+ - 85404.94531 d0*X(1)**2

+ + 2106631.25d0*X(I)**3

- 29870884.d0*X(I)**4

+ 238106752.d0*X(I)**5

- 991233280.d0*X(I)**6

+ 1674745088.d0*X(I)**7
CONTINUE
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c set input heat flux calculated by Lee (W/m2)

Q = 3321.5d0

c set electrical source (W/m3)

g = 5.29d-6
c clef'me constant conductivity of kapton (W/m'K)

CDKAP = 0.16d0

C

Qotrro = 0.O0
RETURN

ENTRY OUTPUT

C

20

C

210

+

QIN = O.DO

Qotrr =O.DO
DO 20 J=2,M2

DO 20 K=2,N2

QIN = QIN + YCV(J)*ZCV(K)*FLUXLI(J,K,I)

QOUT = QOUT + YCV(J)*ZCV(K)*FLUXII(J,IC1)

CONTINUE

220

+

200

C

C

C

C

50

4O

C

DO 20O IUNIT=IU 1JU2

IF(1TER.EQ.0) WRITE(IUN1T,210)
FORM AT(2X,'ITER',3X,'I'(L I,M2,N2)',5x,'T(LI,M2,2)',

8X,'QIN', 13X,'QOUT,9X,'NTC(1)')
WRITE(IUNIT,220)ITER,T(L1 ,M2,N2),T(L1 ,M2,2),QIN,QOUT, N'I_ ( 1)

FORMAT(2XJ3,3X, IPE 10.2,5x, 1PE 10.2,5X,1 PEI0.3,TX, I PE 10.3,

7X,I2)
CONTINUE

create a convergence criterion

IF (ITER.LT.ITRMIN) RETURN

DIFF = ABS((QOUT-QOIYF0)/(QOUT+SMALL))

Qo_trr
IF (DIFF.LE.epsi.OR.ITER.EQ.LAST) THEN

calculate overall energy balance

HTBAL = QIN + QOUT

EBAL = ABS(HTBAL/QIN)

DO 40 IUNIT=IU I,IU2

WRITE(IUNIT,50)EB AL

FORMAT(/,2X,'EB AL', 1PE 11.3)

CONTINUE

CALL PRINT

close (iu2)

KSTOP=I

ENDIF

RETURN

ENTRY PHI

set conductivities and electrical source

DO 300 K=2,N2

DO 300 J=2,M2

DO 300 I=2,L2
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C

C

IF (Y(J).LT.rlkaptOR.Z(K).LTxlkapt)
+ GAM(I,J,K) = CDKAP

+

+

+

C

IF (Y(J).GE.rlkapLANDI(K).GE.rlkapt) THEN

GAM(I,J,K) = 0.01449D0 + 0.1005D0*T(I,J,K)

+ 0.005584D0*T(I,J,K) *'2
- 1.911D-4*T(LJ, K)**3

+ 3.283D-6*T(IJ,K)**4

- 2.88D-8*TCIJ,K)**5

+ 9.859D-11*T(IJ,K)**6

c set volumetric heat source

SC(LJ,K) = g
ENDIF

300 CONTINUE

C

C

310

C

32O

C

33O

C

set boundary conditions
DO 310 K=2,N2

DO 310 J=2,M2

KBCLI(AK) = 2

- for the manganin

IF ( Y(J).GE.rikapt AND.Z(K).GExlkapt)

+ FLXCLI(J,K) = Q
CONTINUE

DO 320 K=2,N2

DO 320 I=2,L2

KBCJ1(I,K)=2
KBCMI(I,K)=2

CONTINUE

DO 330 J=2,M2

DO 330 I=2,L2

KBCKI(I,J)=2

KBCN l(I,J)=2

CONTINUE

RETURN

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
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Appendix C

The Fortran Program MC.FOR

This program, MC.FOR, performs a Monte-Carlo analysis of the HTS thermal bridges

designed by Kasey M. Lee. The distribution factors Dij are computed in order to then

determine the radiative heat transfer in the enclosure and more specifically on the

substrate material. Therefore MC.FOR has the ability to increase the number of rings in

the substrate material. This program was developed by Sandrine Garcia, 1994.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

Program MCHTS
C

C

C Name of the main variables used in this code

C integer
C * nelemt : number of surfaces in the enclosure

C * nrings : number of rings in the substrate material

C * nbundles : number of energy bundles emitted by each surface

C * counter : counter of energy bundles emitted by each surface

C * il : emitting surface
C * i2 : bundle number

C * i : source surface

C * j : surface striked by an energy bundle

C * k(nelemt) : determines the z coordinate of each rings in the substrate
C material

C * seed : implemented to the random number generator urand0

C

C real

C * countDij(nelemLnelemt) : number of energy bundle emitted by surface i

C and absorbed by surface j
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C

C

C

C

C

C

C

C
C

C
C

C

C
C

C

C

C

C

C

C

C

C

C
C

C

C

C

C

C

* Dij(nelemt, nelemt) : distribution factor

* Dtot : summation of all Dij; should be equal to 1

* alpha : angle between surfaces 1 and 2 in the single housing chamber;

since it is a third of a cylinder, alpha=2*pi/3

* H : Height of the thermal bridge

* R : radius of the single housing chamber
* 1 : width of the substrate material

* • : thickness of the substrate material

* (xa, ya) : coordinates of point A in the plane (x-y)

* (xb,yb) : coordinates of point B

* (xc,yc) : coordinates of point C

* (xd,yd) : coordinates of point D "

* (xe,ye) : coordinates of point E "
* (xl.yl.zl) : coordinates of the point of emission

* (x2,y2,z2) : coordinates of the point of intersection between the energy

bundle emitted from point 1 on surface i and surface j

* (ll,ml,nl) : direction cosines of the energy bundle unit vector emitted
from surface i

* (12,m2,n2) : direction cosines of the energy bundle unit vector reflected

on surface j

* emiss(nelemt) : emissivity of each surface

* absorpt(nelemt) : absorptivity of each surface

* ratio(nelemt) : reflectivity ratio of each surface

integer nelemt, nrings,nbundles,countelt(69),max,

+ i,il,i2d,k(69),seedl,seed2

double precision Dij(69,69),Dtot(69),countDij(69.69),

+ pi, alpha, H,R,l,e, xa, ya, xb,yb,xc,yc,xd,yd,xe,ye,

+ 1l,m 1,n 1,12,m2,n2.x l,y l,z l,x2,y2,z2.Lmin,

+ A(69 ),emiss(69),absorpt (69),ratio(69),urand

COMMON/RANDOM/seed l,seed2

COMMON/GEOM l/m-ings,alpha, H,R,pi

COMMON/GEOM2/1,e

COMMON/POINTABC/xa, ya, xb,yb,xc,yc

COMMON/POINTDFdxd,ydoxe, ye
COMMON/PROP 1/A.emiss,nelemt

COMMON/PROP2/absorpt,ratio,nbundles

COMMON/COUNTER/countDij,Dij.Dtot, countelt
COMMON/SUBSTRATE/k

COMMON/POINTI/x l,y 1,zl

COMMON/POINT2/x2,y2,z2

COMMON/DIRECTION 1/I 1.m I,n 1

COMMON/DIRECTION2/12,m2.n2

set constants

call const

open( 10.f'fl_' 100m 16n .out')

open(20,f'de=' 100m 16n.dat')

output title :

write(*,*)'MCproject running ...'

write(10,*)'output : 100ml6n.out'

write( 10,*)'emiss 1(housing)=0.020'

write( 10,* )'absorpt! (housing)=0.020'
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write(lO,*)'ratio I (housing)=0.95'

write(lO,*)'emiss2(substrate)--0.80'

write( 10,* )'absorpt2(substrate)=0.80'

write(lO,*)Tatio2(subs_ate)=0.15'

write(lO,*)'nrings = 16'

write(lO,*)'nbundles = 100000'

write(lO,*)'seedl = 12056'

write(lO,*)'seed2 = 08013'
C

CCC DO-LOOP TO STUDY EMISSION FROM EACH SURFACE

C in the single housing chamber :

C * surfaces 1 and 2 are the flat vertical surfaces

C * surface 3 is the cylindrical wall

C * surfaces 4 and 5 are the bottom and the top surfaces

C in the substrate material :

C * surfaces 6 to 6+nrings-1 are the front surfaces

C * surfaces 6+nrings to 6+2*nrings-I are the back surfaces

C * surfaces 6+2*nrings to 6+3*nrings-1 are the left surfaces

C * surfaces 6+3*nrings to 6+4*nrings-1 are the right surfaces
C

C

C

C

CC

C

C

C

C

2

C

C

C

3

DO 999 il=l,nelemt

to follow the progress of the lxogram on the screen

write(*,*)'il= ',il
max=nbundles

initialize countelt(i) and countDij(id)

countelt(i 1)--0

do j=l,nelemt

countDij(il,j)=O.

enddo

do-loop on the number of energy bundles

do 1 i2=l,max

countelt(il)=countelt(il)+ 1

step 1 : locate point of emission on surface i

i=il

call ptofem(i)

step 2 : find the direction of emission

call fdirofem(i)

if (dabs(nl).lt.ld-lO) go to 2

step 3 : find where the emitted energy bundle sU'ikes the enclosure wall
and identify which surface j the energy bundle suriked

call finterse(il.i2.i,j.Lmin)

if (Lmin.eq.lOdlO) then

countelt(il)=countelt(i I )- 1

max=max+ 1

goto 1
endif

C

C step 4 : is the energy bundle absorbed or reflected on surface j ?

4 if (absorpt(j).ge.urandO) then

C the energy bundle is absorbed

countDij(i 1_))=countDij(i l,j)+ 1
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C

goto 1
else

the energy bundle is reflected

goto5
endif

C

C step 5 : is the reflection diffuse or specular ?

5 if (ratio(j).lt.ursndO) then
C the reflection is diffuse

C consider emission from the point (x2.y2,z2) on surface j
xl=x2

yl=y2
zl=z2

iffij
goto 2

else

C the reflection is specular

call specular(j)

C consider now emission from the point(x2,y2,z2) on surface j with

C the direction cosines (12.m2,n2)
x 1=x 2

yl=y2

zl=z2

11=12

ml=m2

nl=n2

i=j

goto3
endif

1 continue

999 CONTINUE

C
C

C

C

OUTPUT SOLUTION

call output
close(10)

close(20)
END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine const

This subroutine set the constants of the problem

C

integer nbundles,nrings.nelemt, i,k(69 ),seed l,seed2

double precision pi,alpha, H,R,Le,xa, ya, xb, yb,xc,yc,xd, yd,xe, ye,

+ emiss 1,absorpt l,ratio l,emiss2, absorpt2,ratio2,
+ A(69),emiss(69),absorpt(69),ralio(69).
+ t,beta

COMMON/RANDOM/seed I ,seed2

COMMON/GEOM l/nrings,alpha, H,R,pi
COMMON/GEOM2/1,e

COMMON/POINTABC/xa, ya, xb,yb.xc,yc
COMMON/POINTDE/xd,yd,xe,ye

COMMON/PROP 1/A,emiss, nelemt

COMMON/PROP2/absorpt,ratio,nbundles
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C

C

C

C

C

C

C

COMMON/SUBSTRATE/k

geometric constants :

pi--dacos(- 1.d0)

alpha=2.d0*pi/3.d0
H=15.24d-2

1=9.144d -3

e---0.1524d-3

R=5.d-2

t=dsqrt((l/2.d0)**2+((R-e)/2.d0)**2)

beta=datan(l/(R-e))

xa=t*cos(alpha/2.d0-beta)

ya=t*sin(alphed2.d0-beta)

xb=xa+e *cos(alpha/2.d0)

yb=ya+e *sin(edpha/2.d0)

x_t*cos(alpha/2.dO+bcta)

y_t* sin(alpha/2.d0+beta)

xd=xc+e*cos(alpha/2.d0)

yd=yc +e *sin(alpha/2.dO)

x_-R* sin(alpha-pi/2.d0)

ye=R *cos(alpha-pi/2.d0)
nbundles= 100000

nrings=16

nelemt=5+4*nrings

seed for the random number generator :

seed 1= 12056

seed 2=08013

call rmarin(seedl, seed2)

radiative properties :

in the single housing chamber
emiss 1--O.020dO

absorptl--O.O2OdO
ratio 1=0.95d0

in the substrat¢

emiss2--O.8OdO

absorpt2=O.8OdO
ratio2=O. 15dO

do i= l,nelemt

if (i.le.5) then

emiss(i)=emiss 1

absorpt(i)=absorpt 1

ratio(i)--ratio l
else

emiss(i)=emiss2

absorpt(i)=absorpt2

ratio(i)--ratio2
endif

enddo

define function k used for the surfaces in the substrate material

do i= 1,6

k(i)=O

©nddo
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C
C

C

do i=7,6+nrings-1

k(i)=k(i-l)+l
enddo

k(6+nrings)=O

do i=7+nrings,6+2*nrings-I

k(i)=k(i-l)+I

enddo

k(6+2*nrings)--O
do i=7+2*mings,6+3*nrings- 1

k(i)=k(i-l)+l

enddo

k(6+3*nrings)=O

do i--7+3*nrings,6+4*nrings- 1

k(i)ffik(i-l)+l
enddo

area of each surface

A(1)=H*R

A(2)=H*R

A(3)=alpha*R*H

A(4)=pi*R**2/3.d0

A(5)=pi*R**2/3.d0

do i=6,(6+4*nrings- 1)

if (6.1e.i.and.i.le.(6+2*nrings-1)) A(i)fl*H]m-ings
if ((6+2*nrings).le.i.and.i.le.(6+4*m-ings-1)) A(i)=e*H/nrings

enddo

return
end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine ptofem(i)

C This subroutine determines the point of emission on surface i
C

C

C

integeri,k(69 ),seedl,seed2,nrings

double l_ecisionR,H,l,e,alpha,pi,xa,ya,xb,yb,xc,yc,xl,yl,zl,

+ urand,randl,rand2,constl,const2

COMMON/RANDOM/seed 1,seed2

COMMON/GEOM 1/nrings,alpha, H,R,pi
COMMON/GEOM2/Le

COMMON/POINTABC/xa, ya, xb,yb,xc,yc
COMMON/SUBSTRATF_

COMMON/POINT1/x l,y 1,zl

ff surface 1 is emitting :

if (i.eq.l) then

xl=R*urand0

yl=0.d0

zl=H*urand0
else

if surface 2 is emitting :

if (i.e_l.2) then

randl=urandO

xl=-cos(alpha/2.dO)*R*randl
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C
C

C
C

10

C
C

C

C

11

C

C

C

C

C

C

y 1=sin(alpha/2.d0)*R*rand 1
zl=H*urand0
else

ff surface 3 is emitting :

if (i.eq.3) then

randl=urand0

x l=R*dcos(alpha*rand 1)

y l=R*dsin(alpha*rand 1)
zl=H*urand0

else

4-

ff surface 4 is emitting :

ff (i.eq.4) then
randl=urandO

rand2=urandO

x 1=R*dsqrt(rand 1 )*dcos(alpha*rand2)

y 1=R* dsqrt(rand 1 )* dsin(alpha*rand2)
zl--0.0

neglect the case where the point of emission is in the 'hole'

corresponding to the subsU'ate material

constl=((xl -xa)*(yb-ya)-(y l-ya)*(xb-xa))/

((xc-xa)*(yb-ya)-(yc-ya)*(xb-xa))

const2=((x 1-xa)-const l*(xc-xa))/(xb-xa)

if (0.d0.1t.const 1.and.constl .lt 1 .and.

0.d0.1t.const2.and.const2.1t.1) go to 10

else

if surface 5 is emitting :

if (i.eq.5) then

randl=urandO

rand2=urand0

x l=R*dsqrt(rand l)*dcos(alpha*rand2)

y l=R*dsqrt(rand l)*dsin(alpha*rand2)
zl=H

neglect the case where the point of emission is in the 'hole'

corresponding to the substrate material
constl=((xl -xa)*(yb-ya)-(y l-ya)*(xb-xa))/

((xc-xa)*(yb-ya)-(yc-ya)*(xb-xa))

const2=((xl-xa)-constl*(xc-xa))/(xb-xa)

if (0.d0.1t.constl .and.constl.lt.l.and.

0.d0.1t.const2.and.const2.1t.l) go to 11

else

if a surface on the front side of the substzate material is emitting :

if (6.1e.i.and.i.le.(6+nrings-l)) then

rand l=urand 0

x l=-sin(alpha/2.d0)* l*randl +xb

y l=cos(alpha/2.d0)*l*randl +yb

z 1=H/m-ings*urand()+k(i)*H/nrings

else

if a surface on the back side of the subsU'ate material is emitting :

if ((6+nrings).le.i.and.i.le.(6+2*nrings-l)) then

rand 1=urand()
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C

C

C

C

C

x l=-sin(alpha/2.d0)*l*rand 1+xa

y l=cos(alphaf2.d0)*l*rand 1+ya

z 1=H/nrings*urand0+k(i)*H/nrings
else

if a surface on the left side of the subsl_ate material is emitting :

if ((6+2*nrings).le.i.and.i.le.(6+3*nrings-1)) then

rand l=uzand0

x l=cos(alpha/2.d0)*e*rand l+xa

y 1=sin(alpha/2.d0) *e*randl+ya

z l=H/nrings *urand()+k(i)*H]nrings
else

if a surface on the right side of the substrate material is emitting :

if ((6+3*nrings).le.i.and.i.le.(6+4*nrings-1)) then

rand I =urand0

x 1=cos(alpha/2.d0)*e*rand l+xc

y 1--sin(alpha/2.d0)*e*rand 1+yc
zl =l-l]nrings*urand()+k(i)*H/nrings

endif

endif
endif

endif

endif

endif

endif

endif

endif

return

end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine adjust(Lm,n)

C "Fnis subroutine adjusts the direction cosines to avoid accumulated errors
C

C
double precision Lm,n,o

o=dsqrt(l**2+m**2+n**2)
1=1/o

m=m]o

n=n]o

return

end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine fdirofem(i)

C This subroutine determines the direction cosines (ll,ml,nl) of emission
from surface iC

C

C

integer i, i2,k(69).nrings,seed l,seed2

double precision H.alpha, R.pi, xl,yl,zl.xa, ya, xb.yb,xc,yc,urand,

+ 1l.ml.n l.theta, phi

COMMON/RANDOM/seed 1.seed2

COMMON/GEOM l/m'ings,alpha.H.R,pi
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C

C

C

C

C

C

C

C

C

C

C

C

C

C

COMMON/POINTABC/xa, ya, xb,yb,xc,yc
COMMON/SUB STRATE/k

COMMON/POINT1/x l,y l,zl

COMMON/DIRECTION 1/11,m 1,n 1

for a diffuse emitter, the angles theta and phi giving the direction of
emission in the enclosure arc known :

theta=dasin(dsqrt(urand0))

phi=2.d0*pi*urand0

if surface 1 is emitting :

if (i.eq.l) then
11=sin(theta)*sin(phi)

ml=cos(theta)

n 1=sin(theta)*cos(phi)
check nl.sl>0

if (ml.lt.0.d0) write(10,*)'surfl : nl.sl<0 !'
else

if surface 2 is emitting :

if (i.eq.2) then

11=cos(alpha/2.dO)*sin(theta) *sin(phi)+

+ sin(alpha/2.dO)*cos(theta)

m 1=cos(alpha/2.dO)*cos(theta)-

+ sin(alpha/2.dO)* sin(theta)*sin(phi)

n l=sin(theta)*cos(phi)
check nl.sl>O

ff ((sin( alphaY2.dO)*l 1+cos(alpha/2.dO) *m l).lt.O.dO)
+ write(lO,*)'surf'2 : nl.sl<O !'

else

if surface 4 is emitting :

if (i.eq.4) then

11 =-sin(theta)*sin(phi)

m l=sin(theta)*cos(phi)

n l=cos(theta)
check nl.sl>O

if (nl.R.O.dO) write.(lO,*)'surf4 : nl.sl<O !'
else

if surface 5 is emitting :

if (i.eq.5) then

11=sin(theta)*sin(phi)

m l=sin(theta)*cos(phi)

n l=-cos(theta)

check nl.sl>O

if (-nl.R.O.dO) write.(lO,*)'surf5 : nl.sl<O !'

else

if a surface on the front side of the subs_ate material is emitting :

if (6.1e.i.and.i.le.(6+nrings-l)) then

i 1=sin(alpha/2.dO)*sin(theta)*sin(phi)+
+ cos(alpha/2.dO) *cos(theta)

m l=sin(alpha/2.dO)*cos(theta)-

+ cos(alpha/2.dO)*sin(theta)*sin(phi)
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C

C

C

C

C

C

n 1=sin(theta)*cos(phi)
check nl.sl>O

if ((cos(alpha/2.dO)*l 1+sin(alpha/2.dO)*m 1).lt.O.dO)

write(lO,*)'case6 : nl.sl<O !'
else

ff a surface on the back side of the substrate material is emitting :

if ((6+nrings).le.i.and.i.le.(6+2*nrings-1)) then

11=-sin(alpha/2.dO)*sin(theta)*sin(phi)-

+ cos(alpha/2.dO)*cos(theta)

mlf-aln( alphaf2.dO)*cos(theta)+

+ cos(alpha/2.dO)*sin(theta)*sin(phi)

n 1=sin(theta)*cos(phi)
check nl.sl>O

if((-cos(alpha/2.dO)*ll-sin(alpha/2.d0)*ml).It.0.d0)

+ write(10,*)'case7: nl.sl<0 !'
else

if a surface on the left side of the substrate material is emitting :

if ((6+2*nrings).le.i.and.i.le.(6+3*nrings-1)) then

11=sin(alpha/2.dO) *cos(theta)-

+ cos(alpha/2.dO)*sin(theta)*sin(phi)

m l=-cos(alphaf2.dO)*cos(theta)-

+ sin(alpha/2.dO)*sin(theta)*aln(phi)

n 1=sin(theta) *cos(phi)
C check nl.sl>O

if ((sin(alpha/2.dO)*ll-cos(alpha/2.dO)*ml).lt.O.dO)
+ write(lO,*)'case8 : nl.sl<O !'

else

C

C if a surface on the right side of the substrate material is emitting :

if ((6+3*nrings).le.i.and.i.le.(6+4*nrings-1)) then

11=-sin(alpha/2.dO)*cos(theta)+

+ cos(alpha/2.dO)*sin(theta)*sin(phi)

m 1=+cos(alpha/2.dO)*cos(theta)+

+ sin(alpha/2.dO)*sin(theta) *sin(phi)

n l=sin(theta)*cos(phi)
C check nl.sl>0

if((-sin(alpha/2.d0)*l1+cos(alpha/2.d0)*ml).It.0.d0)

+ write(10,*)'case9:nl.sl<0 !'
else

C

C

C

if surface3 isemitting:

if(i.eq.3)then

nI=sin(theta)*cos(phi)

m 1=sin(theta)*sin(phi)*xI/R-cos(theta)*yl/R

II=-sm(theta)*sin(phi)*yI/R-cos(theta)*xl/R

check nl.sl>0

if((-xl/R*ll-yl/R*ml).It.0.d0)write(10,*)'sm43:nl.s1<0 !'

endif

endif

endif
endff

endif

endif
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endif

endif

endif

adjust the direction cosines to avoid accumulated errors

call adjust(lljnl,nl)

rettwn
end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine chedim45(x2,y2,z2,alpha,pi,xe,R,L2)

C This subroutine checks if point 2 (x2,y2,z2) is on surface 4 or 5.

If the coordinates satisfy the surface limits then L2 is computed.C

C

C

C

C

C

45

integer rep
double precision xl,yl,zl,x2,y2,z2,alpha, pi,xe,R,L2,

+ const 1,const2,xa, ya, xb,yb,xc,yc,length,beta

COMMON/POINTABC/xa,ya, xb,yb,xc,yc

COMMON/POINTI/x l,y 1,zl

length--dsqrt(x2**2+y2**2)

if (length.le.R.and.(0.d0).le.y2.and.y2.1e.R.and.

+ xe.le.x2.and.x2.1e.R) then

neglect the case where point 2 is in the "nole'corresponding to the
subsU'ate material

const l=((x l-xa)*(yb-ya)-(y 1-ya)*(xb-xa))/

+ ((xe-xa)*(yb-ya)-(yc-ya)*(xb-xa))
const2=((x l-xa)-constl*(xe-xa))/(xb-xa)

if (0.d0.1t.constl .and.constl .It. 1.and.
+ 0.dO.R.const2.and.const2.1t.1) go to 45

if (x2.1t.(0.dO)) then

if (y2.1t.(1.d-lO)) y2=ld-10

beta=datan(dabs(x2/y2))

if (beta.lt.(alpha-pi/2.d0)) then

rep=0
else

rep=l

endif

endif

if (x2.ge.(0.d0)) rep=0
else

rep=l

endif

if (rep.eq.O) L2=dsqrt((x2-x l)**2+(y2-yl)**2+(z2-zl)**2)

return

end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine chedim289( x2,y2,z2.H,a,b,c,d,L2 )

C This subroutine checks if point 2 (x2,y2,z2) is on surface 2, or

C on the left or right side of the subslxate material.

C If the coordinates satisfy the surface limits then L2 is computed.

C

double precision x2,y2,z2,xl,yl,zl,H,a.b,c,d,L2
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C

C

C

COMMON/POINTI/x l,yl,zl

if ((0.d0).lt.z2.end.z2.1LH.and.a.le.x2.and.x2.1e.b.

+ and.c.le.y2.and.y2.1e.d) then

L2=dsqrt((x2-x 1)**2+(y2-y l)**2+(z2-z 1)*'2)
endif

return

end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine chedim67(x2,y2,z2,H,a,b,c,d,L2)
C "l'his subroutine checks ff point 2 (x2,y2,z2) is on the front or back side
C of the substrate material.

C If the coordinates satisfy the surface limits then L2 is computed.
C

C

C

C

double precision x2,y2,z2,xl,yl,zl,H,a,b,c,d,L2

COMMON/POINTIIx l,y 1,zl

if ((0.d0).R.z2.and.z2.1t.H.and.a.lt.x2.end.x2.1t.b.

+ and.c.R.y2.and.y2.1t.d) then

L2--dsqrt((x2-x l)**2+(y2-yl)**2+(z2-zl)**2)
endif

return

end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine chedim I (x2,y2,z2,H,a,b,L2)

C This subrourine cbeks if point 2 (x2,y2.z2) is on surface 1.

If the coordinates satisfy the surface limits then L2 is computed.C

C

C

C

C

double precision x2,y2,z2,xl,yl,zl,H,a,b,L2

COMMON/POINTI/x 1,y 1,zl

if ((0.dO).R.z2.and.z2.1t.H.and.a.lt.x2.and.x2.1e.b) then

L2=dsqrt((x2-x l)**2+(y2-y l)**2+(z2-zl)**2)
endif

return

end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine chedin_ (x2,y2,z2,xe,H,R,L2)

C This subroutine cheks if point 2 (x2,y2.z2) is on surface 3.

If the coordinates satisfy the surface limits then L2 is computed.

double precision x2,y2,z2,xl,yl,zl,xe,H,R,L2

COMMON/POINTI/x l,y 1,zl

if ((0.d0).lt.z2.and.z2.1t.H.and.(0.d0).le.y2.and.y2.1e.R.and.

+ xe.lLx2.and.x2.1e.R) then

L2--dsqrt((x2-x l)**2+(y2-y 1)**2+(z2-zl)**2)
endif
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C

return

end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine quadsolve(i 1,i2,i,R,root)

C this subroutine gives the roots of the equation ax**2+b*x+c---0

C

C

C

integer il,i2,i

double precision a,b,c,d,root(2),xl,yl,zl,ll,ml,nl,R

COMMON/POINT1/xl,yl,zl

COMMON/DIRECTION 1/ll,ml,n 1

a=(ll/n 1)**2+(ml/nl)**2

b=2.d0/n l*(ll*(xl-ll*zl/nl)+ml*(yl-ml*zl/nl))

c=(xl-ll*zl/nl)**2+(yl-ml*zl/nl)**2-R**2

d=(b**2-4.d0*a*c)

if (d.lt.0) then

write(10,*)'quadsolve : complex roots !'

write(10,*)'il= ',il
write(10,*)'i2= ',i2

write(10,*)'i= ',i

write( 10,*)'d= ',d

stop
else

root(1)=(-b-dsqrt(d))/(2.d0*a)

root(2)=( -b+dsqrt(d))/(2.d0* a)
endif

return

end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine finterse(il,i2,i,j,Lmin )

C This subroutine finds point 2 (x2,y2,z2) where the emitted energy bundle
C strikes the enclosure wall.

C It also identifies which surface j the energy bundle striked

C

C

C

C

C

C

integer i,k,k2,nrin gs,j,i2,i 1
double precision pi,xl,yl,zl,ll,ml,nl,H,R,alpha, x2,y2,z2,Lmin,

+ x(9),y(9),z(9),L(9),

+ root(2),xa, ya, xb,yb,xc,yc,xd,yd, xe,ye

COMMON/GEOM l/nrings,alpha, H,R,pi

COMM ON/POINT ABC/x a,ya, xb, yb,xc, yc

COMMON/POINTDE/xd,yd,xe,ye

COMMON/IK)INT l/x 1,y l,zl

COMMON/POINT2/x2,y2,z2
COMMON/DIRECTION 1/11anl,n I

initializealldistancesto a big value lOdlO

do k=l,9

L(k)=IO.dlO

enddo

ease 1 : the energy bundle strikes surface 1
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C if the emitting surface is 1 or a surface on the right side of

C the substrate material, then reject case 1

if ((i.eq.l).or.((6+3*nrings).le.i.and.i.le.(6+4*m'ings-1))) then

go to 102
endif

101 y(D=0.d0

z(l)=zl-nl*yl/ml

x(1)=ll*z(l)/nl +xl-ll*zl/nl

C check if (x2,y2,z2) is on surface 1

call chediml (x(1),y(l),z(1),H,(0.d0),R,L(1))
C

C

C

C

102

C

case 2 : the energy bundle strikes surface 2

if the emitting surface is 2 or a surface on the left side of

the substrate material, then reject case 2

if ((i.eq.2).or.((6+2*nrings).le.i.and.i.le.(6+3*nrings-l))) then

go to 103
eudif

z(2)=n l/(sin(alpha/2.d0)*l 1+cos(alpha/2.d0)*ml)*(sin(alphat2.d0)*

+ (ll*zl/nl-x 1)+cos(alpha/2.d0)*(ml*zl/n l-y1))
x(2)=ll*z(2)/nl+xl-ll*zl/nl

y(2)=ml*z(2)/n 1+yl-ml*zl/n 1

check if (x2,y2,z2) is on surface 2

call chedim289( x(2),y(2),z(2),H,xe,(0.d0),(0.d0),ye,L(2))
C

C case 3 : the energy bundle strikes surface 3

C if the emitting surface is on the back side of the substrate,

C then reject case 3

if ((6+nrings).ie.i.and.i.le.(6+2*nrings- 1)) then
go to 104

endif

103 callquadsolve(il,i2,i,R,root)

z(3)_root(1)

x(3)=ll*root(1)/nl+x 1-11*zl/nI

y(3)=ml _oot(1)/nl+yl-m1*zl/nl

C check if(x2,y2,z2)ison surface3

callchedim3 (x(3),y(3),z(3),xe,H,R,L(3))

C if(x2,y2,z2)isnot on surf_ 3 or if(x2,y2,z2)_(xl,yl,zl),

C then reject root(l) and study root(2)

if ((L(3).lt. ld- 10).or.(L(3).eq. 10dl0)) then
z(3)--root(2)

x(3)=l l*root(2)/nl +x 1-1l*z l/nl

y(3)=ml*root(2)/nl+yloml*zl/nl

C check if (x2,y2,z2) is on surface 3

call chedim3(x(3),y(3),z(3),xe,H,R,L(3))

C if (x2,y2,z2)=(xl,yl,zl), then reject the solution
if (L(3).lt.ld-10) L(3)=lOdl0

eudif

C

C

C

104

case 4 : the energy bundle strikes surface 4

if the emitting surface is 4, then reject case 4

if (i.eq.4) then

go to 105
eudif

z(4)=O.d0

x(4)=xl-ll*zl/nl
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C

C

C
C

105

C

C

C

C

y(4)=yl-ml*zl/nl

check if(x2,y2,z2)is on surface4

callchedim45 (x(4),y(4),z(4),alpha,pi,xe,R,L(4))

case 5 : the energy bundle strikes surface 5

if the emitting surface is 5, then reject case 5

if(i.eq.5)then

go to I06
endif

z(5)=H

x(5)=ll*z(5)/n1+xl-II*zl/nl

y(5)=mI *z(5)/nl+yl-mI *zl/nl

check if(x2,y2,z2)ison surface5

callchedim45 (x(5),y(5),z(5),alpha,pi,xe,R,L(5))

if the emitting surface is in the substrate material,

then reject cases 6,7,8,9

if (6.1e.i.and.i.le.(6+4*m'ings-l)) then

go to 110

endif

C

C case 6 : the energy bundle strikes the front surfaces of the substrate

C material (surfaces 6 to 6+nrings-1)

106 z(6 )=n 1/(cos(alpha/2.dO)* 11+sin(alpha/2.dO)*ml)* (cos(alpha/2-dO)*

+ (xb+ll *z 1/n 1-xl)+sin(alpha/2.dO)*(yb+ml*zl/n l-yl))

x(6)=ll*z(6)/nl+xl-ll*zl/nl

y(6)=ml*z(6)/nl +yl-ml*zl/nl
C check if (x2,y2,z2) is on the front side of the substrate material

call chefftm67(x(6),y(6),z(6),H,xd, xb,yb,yd,L(6))
C

C case 7 : the energy bundle strikes the back surfaces of the substrate

C material (surfaces 6+nrings to 6+2nrings-1)

C if the emitting surface is 3, then reject case 7

if (i.eq.3) then

go to 108
endif

107 z(7)=n 1/(cos(alpha/2.d0)*ll+sin(alpha/2.d0)*ml)*(cos(alpha/2.d0)*

+ (xa+ll*zl/n 1-xl)+sin(alpha/'2.d0)*(ya+ml*zl/n l-yl))

x(7)=ll*z(7)/nl+x 1-11*zl/nl

y(7)=ml*z(7)/nl +yl-ml*zl/nl
C check if (x2,y2,z2) is on the back side of the substrate material

call chedim6"/(x(7 ),y(7 ),z(']),H,xc, xa, ya, yc,L('/))

C

C case 8 : the energy bundle strikes the left surfaces of the substrate
C material (surfaces 6+2nrings to 6+3nrings-l)

C ff the emitting surface is 2, then reject case 8

if (i.eq.2) then

go to 109
endif

108 z(8)=n 1/(-sin(alpha/2.dO)*l 1+cos(alpha/2.dO)*ml )*

+ (-sin(alpha/2.dO)*(xa+ll *zl/n l-xl)+

+ cos(alpha/2.dO)*(ya+ml *zl/nl-yl))

x(8)=ll*z(8)/nl +xl-ll*zl/nl

y(8)=ml*z(8)/n I +yl-ml*zl/nl
C check if (x2,y2,z2) is on the left side of the substrate material
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C

C

C

C

109

C

C

C

II0

C

C

C

callchedim289(x(8),y(8 ),z(8),H,xa,xb,ya, yb,L(8))

case 9 : the energy bundle strikes the fight surfaces of the substrate

material (surfaces 6+3nrings to 6+4nrings-1)

if the emiUing surface is 1, then reject case 9

if (i.eq.1) then

go to 110
endif

z(9 )=n 1/( -sin(alpha/2.d0)* 11+cos(alpha/2.d0)*m I )*

+ (-sin(alpha/2.d0)*(xc+ll*zl/nl-xl)+

+ cos(alpha/2.d0)*(yc+ml *zl/nl-yl))
x(9)=ll*z(9)/nl+xl-ll*zl/nl

y(9)=ml*z(9)/n 1+yl-ml*zl/nl

check if (x2,y2,z2) is on the right side of the substrate material

call chedim289(x(9 ),y(9 ),z(9),H,xc,xd,yc,yd,L(9 ))

fred the shortest length of all possible solutions :

Lmin=MIN(L( I),L(2),L(3),L(4),L(5 ),L(6 ),L(7),L(8),L(9))

If(Lmin.eq.L(D)k2=l
If (Lmin.eq.L(2)) k2=2

If (Lmin.eq.L(3))k2=3
If (Lnfin.eq.L(4)) k2--4

If(Lmin.eq.L(5))k2=5
If (Lmin.eq.L(6))k2--6
If (Lmin.eq.L(7))k2=7
If (Lmin.eq.L(8))k2=8
If (Lmin.eq.L(9))k2--9

the oorrect point of intersection corresponds to the shortest lenght
x2=x(k2)

y2=y(k2)

z2=z(k2)

now identify the surface for (x2,y2,z2)

if (k2.eq.1) j=l

if (k2.eq.2) j=2

if (k2.eq.3) j=3
if (k2.eq.4) j---4

if (k2.eq.5)j=5
if (k2.eq.6) then

do k=O,(nrings-1)

if ((k*l-I/nrings).le.z2.and.z2.1t.((k+l)*H/nrings)) j=k+6
enddo

else

if (k2.eq.7) then

do k--0,(nriags- 1)

if ((k*H/arings).le.z2.and.z2.1t.((k+ 1)*H/arings))

+ j=(k+nrings)+6
enddo

else

if (k2.eq.8) then

do k=0,(nrings-l)

if ((k* H/nrings).le.z2.and.z2.1t.((k+ 1) *H/nrings))

+ j=(k+2*nrings)+6
enddo

else
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C

if (k2.eq.9) then

do k=0,(nrings-l)

if ((k*H/nrings).le.z2.and.z2.1t.((k+l)*Hlnrings))

j=(k+3*nrings)+6

enddo

endif

endif

endif

endif

return

end
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine fcos2(lan,n,12,m2,n2)
C This subroutine determines the direction (12,m2,n2) of reflection on a surface.

C The direction (ll,ml,nl) of emission and the normal unit vector to the

C surface are known.

C

C

C

C

double precision llanl,nl,l,m,n,12an2,n2

COMMON/DIRECTION lfll anl,n I

12=ll-2.dO*l*(ll*l+ml*m+nl*n)

m2=m 1-2 .dO*m* (11*l+m I *m+n I *n)

n2=nl-2.dO*n*(ll*l+ml*m+nl*n)

C

C

C

return

end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine specular(j)
C For a given direction (ilanl,nl) of emission, this subroutine computes

the direction (1Xm2,n2) of reflection on each surface of the enclosure.

(l,m,n) are the coordinates of the normal unit vector to the surface.

C

C

C

integer j,nrings
double precision llanl,nl,12,m2,n2,x2,y2,z2,1an, n,alpha, H,R,pi

COMMON/DIRECTION 1/11anl,n 1

COMMON/DIRECTION2/12an2,n2

COMMON/POINT2/x2,y2,z2

COMMON/GEOM l/mings,alpha, H,R,pi

if reflection occurs on surface 1 :

if (j.cq.l) then
l=O.dO

m=l.dO

n=O.dO

call fcos2(1 an,n,12,m 2,n2)

else

if reflection occurs on surface 2 :

if (j.eq.2) then

i=sin(alpha/2.d0)

m=cos(alpha/2.d0)
n=O.d0
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C

C

C

C

C

C

C

C

C

C

C

C

C

C

callfcos2(Ijrt.n,12,m2,n2)

else

if reflection occurs on surface 3 :

if (j.eq.3) then
I=-x2YR

m=-y2/R
n=0.d0

call fcos2(l,m,n,12,m2,n2)
else

if reflection occurs on surface 4 :

if{j.eq.4)then

l=O.dO

m=O.dO

n=l.dO

callfcos2(l,m,n,12,m2,n2)
else

if reflection occurs on surface 5 :

if (j.eq.5) then
l--O.dO

m=O.dO

n=- I.dO

callfcos2(Lm,n,12,m2,n2)
else

if reflection occurs on the front side of the substrate material

if (6.1e.j.and.j.le.(6+nrings-1)) then

I=cos(alpha/2.d0)

m=sin(alpha/2.d0)
n--O.d0

callfcos2(l,m,n,12,m2,n2)

else

if reflection occurs on the back side of the substrate material :

if ((6+nrings).le.j.and.j.le.(6+2*nrings-l)) then

l=-cos(alpha/2.dO)

m=-sm(alpha/2.dO)
n--O.dO

call fcos2(Lm,n,12,m2,n2)
else

if reflection occurs on the left side of the substrate material :

if ((6+2*nrings).le.j.and.j.le.(6+3*arings- 1)) then

l=sin(alphar2.dO)

m=-cos(alpha/2.dO)
n=O.dO

callfcos2(l,m,n,12.m2,n2)

else

if reflection occurs on the right side of the subslaate material :

if ((6+3*nrings).le.j.and.j.le.(6+4*nrings-1)) then

l=-sin(alpha/2.dO)

m=cos(alpha/2.dO)
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C

C

C

n--0.d0

call fcos2(I,m,n,12,m2,n2)
endif

endif
endif

endif

endff

endif

endif

endif

endif

adjust the direction cosines to avoid accumulated errors

call adjust(12,m2,n2)

return

end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine output

C This subroutine computes the distribution factors Dij and Dtot.

It also checks the convergence of the solution.C

C

C

C

C

C

C

C

integer ij,countelt(69),nelemt

double precision emiss(69),A(69),countDij(69,69),Dij(69,69),
+ Dtot(69),error(69),E

COMMON/COUNTER/countDij,Dij,Dtot, countelt

COMMON/PROP 1/A,emiss,nelemt

computation of the distribution factors Dij and Dtot
do i= l,nelemt

Dtot(i)=0.d0

do j= l,nelemt

Dij(ij)=countDij(i,j)/countelt(i)

Dtot(i)=Dtot(i)+Dij(i,j)

write(l 0.*)'D(',i,',',j,')= '.Dij (i,j)

write(20,*)Dij(i,j)

enddo

write(10,*)'Dtot(',i,')= ',Dtot(i)
enddo

check convergence of the solution

the 'error' for each surface and the weighted 'Error' are computed :

do i= l,nelemt

error(i)=0.d0

do j= 1,nelemt

error(i)=error(i)+emiss(j) *A(j)* Dij (j,i)

enddo

error(i)=error(i)/emiss(i)/A(i)-1 .dO

enddo

E=0.d0

Asum=0.d0

do i= 1,nelemt

E=E+A(i)*error(i)

Asum=Asum+A(i)
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C

eaddo

E-_abs(E/Asum)

write( IO,*)'E = ',E

C

C

C

return

end

CCCCCCCCCCCCCCC_CC_CCCCCCCCCCCC_CC-___CCC_CC_CCC_CC

subroutine rmarin(ij, kl)

C This is the initialization routine for the random number generator RANMAR0
C NOTE: The seed variables can have values between: 0 <= IJ <= 31328
C 0 <= KL <= 30081

C The random number sequences created by these two seeds are of sufficient

C length to complete an entire calculation with. For example, if sveral

C different groups are working on different parts of the same calculation,

C each group could be assigned its own IJ seed. This would leave each group

C with 30000 choices for the second seed. That is to say, this random

C number generator can create 900 million different subsequences -- with

C each subsequence having a length of approximately 10A30.
C

C Use 13 = 1802 & KL = 9373 to test the random number generator. The

C subroutine RANMAR should be used to generate 20000 random numbers.

C Then display the next six random numbers generated multiplied by 4096*4096

C If the random number generator is working properly, the random numbers
C should be:

6533892.0 14220222.0 7275067.0

6172232.0 8354498.0 10633180.0

C

implicit real*8 (a-h, o-z)
real*8 u(97), c, ed, cm

integer i97, j97
logical test

common/rasetl/u, c, cd, cm. i97, j97, test
test = .false.

if( IJ .It. 0 .or. LI .gt. 31328 .or.

1 KL .It. 0 .or. KL .gt. 30081 ) then

write (*, *) 'Tne first random number seed must have a'

write (*, *) ' value between 0 and 31328.'

write (*, *)

write (*, *) ' The second seed must have a value between 0'

write (*, *) ' and 30081?

stop
endif

i = mod(Ll/177, 177) + 2

j = mod(IJ , 177) + 2

k -- mod(KlJ169, 178) + 1

I = mod(kl, 169)

do2ii=l, 97
s=0.0

t= 0.5

do3jj= 1,24

m = mod(mod(i*j, 179)*L 179)
i=j

j=k
k=m
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C

1 = mod(53*l+l, 169)

if (rood(l'm, 64) .ge. 32) then
S=S+[

endif

t=0.5* t

continue

u(ii) = s
continue

c = 362436.0 / 16777216.0

cd = 7654321.0 / 16777216.0

cm = 16777213.0 116777216.0

i97 = 97

j97 = 33
test = .true.

return

end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

real*8 function urand 0

C This is the random number generator proposed by George Marsaglia in

C Florida State University Report: FSU-SCRI-87-50

C

implicit real*8 (a-h, o-z)

real*8 u(97), c, cd, cm

integer i97, j97

logical test

common/rasetl/u, c, cd, cm, i97, j97, test

C

C

ff(.not.test) then
write (*, *) 'urand error #1: must call the initialization

+ routine rmarin before calling urand.'

stop
endif

uni = u(i97) - u(j97)

if( uni .It. 0.0 ) uni = uni + 1.0

u(i97) = uni
i97 = i97 - 1

if(a97 .eq. O) i97 = 97

j97 = j97- 1

if(j97 .eq. O) j97 = 97
c=c-cd

if( c .It. 0.0 ) c = c + cm

uni = uni - c

if( uni .It. 0.0 ) uni = uni + 1.0

urand = uni

return

end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
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Appendix D

The Fortran Program TQ.FOR

This program, TQ.FOR, computes the unknown temperatures and radiative net heat

fluxes of the surfaces defined for the FITS thermal bridge housing area designed by Kasey

M. Lee. The distribution factors were computed using the program MC.FOR (Appendix

C). This program was developed by Sandrine Garcia, 1994.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

PROGRAM TQMC
C

integer nrings,nelemt, i

double precision T(69),q(69),Qtot,Qbot,QtopboLQ54,area(69),

+ A(2,2),C( 2),delta(69,69),Dij(69,69 ),

+ emiss(69),sigma, H,R,l,e,pi, alpha
C

C

COMMON/PR OP/sigma, emiss

COMMON/ELEMT/nelemt

COMMON/SUBSTRATE 1/nrings,H

COMMON/SUB STRATE2/R,alpha,pi,Le
COMMON/TEMPERAT/T

COMMON/FLUX/q

COMMON/Q/Qbot,QtopboLQtoLQ54

COMMON/AREA/area

COMMON/FACTOR/Dij

COMMON/KRON EKER/delta

COMMON/MATA/A

COMMON/MATC/C

open(unit= 10, file='Q16ngre.out')

write(lO,*)'output : Ql6ngre.out'
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cc

CC

C
C

C

C

C

C

C

C

C

C

write( 10,*)'nrings=l 6'
write(10,*)'nominal estimated values used for the radiative

+properties'
write(10,*)'temperature profile used for the subsU'ate :'

write(10,*)' thermal bridge BSCCO/FSILICA'

write(10,*)' thermal bridge BSCCO/YSZ'

write(10,*)' thermal bridge YBCO/GREEN'

set constants

call const

definition of the matrices Dij,delta, A,C

call MDij
call Mdelta

call MatrixA
call MatrixC

Computation of TI and T2
solve A*TI2=C by the Gaussian elimination method

call solve

Computation of the Fluxes

call compQ

write(lO, lO0)
do i= l,ne|emt

write(lO, I IO)i,T(i),Q(i),area(i)

enddo

write(10,120)

write(lO,121)
write( 10,122)Qbot

write(10,130)

write(lO,131)

write(10,132)Qtopbot

write( 10,140)

write(lO,141)

write(lO, 142)Qtot
write(lO, 150)

write(lO,151)

write( 10,152)Q54

100 format(/,lx,'surface'4x,_l'(K)',lOx,'Q(W) ',7x,'area(m2)',/)

110 format(2xJ3,5x,f7.3,4x,Ell.5,4x,Ell.5)
120 format(//,'l. Radiative heat load on the bottom of the

+substrate from the entire enclosure :')

121 format(2x,'Qrad-bot (W) = ')

122 format(Ix,El4.4)

130 format(I,'2. Radiative heat load on the bottom of the

+substrate from the top of the substrate :')

131 format(2x,'Qrad-topbot 0V) = ')

132 format(Ix,El4.4)

140 format(I,'3. Radiative heat load on the entire subslrate
+from the entire enclosure :')

141 format(2x,'Qrad-tot (W) = ')

142 format(Ix,El4.4)

150 format(/,'4. Radiative heat load from surface 5
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+to surface4 :')

151 fonmat(2x,'Qrad-54(W) = ')

152 format(lx,E14.4)

close(10)

C

stop
END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCCCCC_CCC_CCCCCCCCCCC_CC_CCCC_______

double precision function Tfsi(x)

C This function gives the temperature distribution as a function of x

C in the thermal bridge BSCCO/FSILICA.

C Tfsi was determined using a polynomial fitting of degree 6.
C

C

C

C

double precision x,C1,C2,C3,C4,C5,C6,C7

set the constants

C1--4.8490772d0

C2=1725.5456543d0

C3=-39113.32421d0
C4=651411.5d0

C5=-6100919.5d0

C6=29254182.d0

C7=-55807916.d0

Tfsi=C 1+C2*x+C3*x**2+C4*x**3+C5*x**4+C6*x**5+C7*x**6

return

end

CCCCC CCCCCCCCCCCCL_CCCCCL-'CCL-'CCCCCCCCC_CL-_CCCCCCC______

double precision function Tysz(x)

C This function gives the temperature disU'ibution as a function of x

C in the thermal bridge BSCCO/YSZ.

C Tysz was determined using a polynomial fitting of degree 6.
C

C

C

C

double precision x,C1,C2,C3,C4,C5,C6,C7

set the constants

C1=3.9761219d0

C2=887.8359985d0

C3=-8196.11035 ld0

C4--95402.742187d0

C5---729424.d0

C6=3161748.25d0

C7=-5818412.5d0

Tysz--C 1+C2*x+C3*x**2+C4*x**3+C5*x**4+C6*x**5+C7*x**6

return

end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

double precision function Tgreen(x)

C This function gives the temperature distribution as a function of x
C in the thermal bridge YBCO/GREEN.

C Tgreen was determined using a polynomial fitting of degree 6.
C

double precision x,CI,C2,C3,C4,C5,C6,C7
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C
C

C

set the constants

C 1=5.3292093d0

C2=1454.3270264d0

C3=-37262.3789d0

C4=681398.3125d0

C5=-6675988.5d0

C6=33007696.d0
C7=-64334344.d0

Tgreen---C 1+C2*x+C3*x**2+C4*x**3+C5*x**4+C6*x**5+C7*x**6

return

end
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine const

This subroutine set the constants of the problemC

C

C

C

C

C

C

C

C

integer nrings, nelemt, i,j

double precision emissl,emiss2,emiss(69),sigma,T(69),q(69),

+ area(69 ),H,R,l,e,pi, alpha,Tfsi,Tysz,Tgreen

COMMON/PROP/sigma, emiss
COMMON/ELEMT/nelemt

COMMON/SLIBSTRATE 1/nrings,H

COMMON/SUB STRATE2/R,aipha,pi, l,e
COMMONfI'EMPERAT/T

COMMON/FLUX/q

COMMON/AREA/area

geometric constants :

pi=dacos(- 1.d0)

alpha=2.d0*pi/3.d0
H=15.24d-2

R=5.d-2

1=9.144d-3

e=O. 1524d-3

mings=16

nelemt=5+4*nrings

radiative properties :

sigma=5.6696d-8
emiss 1=.020dO

emiss2=.8OdO

do i= l.nelemt

if (i.le.5) then

emiss(i)=emiss 1
else

emiss(i)=emiss2
endif

enddo

define the known Temperatures and Fluxes

q(l )=0.d0

q(2)=0.d0

T(3)=30.d0
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CC

CC

C

C

C

T(4)=4.d0

T(5)=80.d0

do i=0,arings- 1

j =i+6

TG)=Tfsi((i+.5d0)*H/nrings )

T(j )=Tysz((i+.5d0) *H/mings)

TG )=Tgreen((i+.5d0) *H/nrings)

T(j+nrings)=TG)

T(j+2*nrings)=T(j)

T(j+3*nrings)=T(j)
enddo

define the area of each surface

area(l)=H*R

area(2)=H*R

area(3)=alpha*R*H

area(4)=pi*R**2/3.d0

area(5)=pi*R**2/3.d0

do i=6,(6+4*nrings- 1)
if (6.1e.i.and.i.le.(6+2*mings-l)) areafi)=l*H/nrings

if ( (6+2*nrings).le.i. and.i.le.(6+4 *nrings- 1))

+ area(i)=e*H/nrings
enddo

return

end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine MDij
C This subroutine reads the distribution factors in the enclosure analyzed

in the program MCproject.for.C

C

C

C

C

integer nelemt, i,j

double precision Dij(69,69)

COMMON/FACTOR/Dij

COMMON/ELEMT/nelemt

open( 1,f'd_'100m 16n.dat')

do i= 1,nelemt

do j=l,nelemt

read(1,*)Dij(id)
enddo

enddo

close(1)

return

end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine Mdelta

This subroutine defines the kronecker delta function delta(i,j)C

C

C

integer nelemt, ij
double precision delta(69,69)

COMMON/ELEMT/nelemt
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C

C

COMMON/KRON EKER/deita

do i= l,nelemt

do j= 1,nelemt

if (i.eq.j) THEN

delta(i,j)=l.d0

else

delta(id)=0.d0
endif

enddo

enddo

return

end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine MatrixA

This subroutine defines the matrix A(2,2) such that A*TI2--CC

C

C

C

C

double precision Dij(69,69),A(2,2)

COMMON/FACTOR/Dij

COMMON/MATA/A

A(I,l)=I.d0-Dij(l,I)

A(I,2)=-Dij(I,2)

A(2,1)=-Dij(2,1)

A(2,2)=I.d0-Dij(2,2)

return

end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine MatrixC

This subroutine defines the vector C(2) such that A*T12--CC

C

C

C

C

integer nelemt,j

double precision C(2),TI2(2),T(69),Dij(69,69)

COMMON/FAC'I_R/Dij

COMMON/ELEMT/nelemt

COMMON/TEMPERAT/T

COMMON/MATC/C

C(1)---0.d0

C(2)----0.d0

do j=3,nelemt

C(1)=C(1) + (T(j))**4*Dij(Ij)

C(2)=C(2) + (T(j))**4*Dij(2j)

enddo

return

end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine solve

C this subroutine solve A*TI2--C for TI and T2 using the gaussian

C elimination method

183



C

C

C

C

integer n,i,j.k
double precision A(2,2),C(2),TI2(2),T(69),

+ AUG(2,3 ),PIVOT, TEMP,MULT

COMMON/TEMPERAT/T

COMMON/M ATA/A

COMMON/MATC/C

n=2

*form the n*(n+l) augmented matrix AUG by adjoining C to A

DO i=l,n

DO j=l,n

AUG(i,j)=A(ij)
ENDDO

ENDDO

DO i=l,n

AUG(i,n+I)---C(i)
ENDDO

DO 70 i=l,n

C * locate nonzero diagonal entry

IF (AUG(Li).eq.0.D0) THEN
PIVOT=0.D0

j=i+l
30 IF ((PIVOT.eq.0.D0).AND.(j.le.n)) THEN

IF (AUG(j,i).ne.0.D0) PIVOT=j
GO TO30

ENDIF

IF (PIVOT.eq.0.D0) THEN
STOP 'MATRIX IS SINGULAR'

ELSE

C * interchange rows i and PIVOT

DO 40 j=l,n+l

TEMP=AUG(i,j)

AUG(i,j)=AUG(PIVOT,j)

AUG(PIVOTj)=TEMP
40 CONTINUE

ENDIF

ENDIF

C * eliminate ith unknown from equations i+l ..... n

DO 60 j=i+l,n

MULT=-AUG(j,i)/AUG(i,i)

DO 50 k=i,n+l

AUG(j,k)=AUG(j,k)+MULT*AUG(i,k)

50 CONTINUE

60 CONTINUE

70 CONTINUE

C *fred the solutions

TI 2(n)=AUG(n,n+ I)/AUG(n,n)

DO 90 j=n-l,1,-I

T12(j)=AUG(j.n+I)

DO 80 k=j+l,n

TI 2(j)=T12(j)-AUG(j,k)*T12(k)
80 CONTINUE

T 120)=T12(j )/AUG(j j)
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90 CONTINUE

C

C

T(1)=(TI 2(1))**0.25

T(2)=(TI 2(2))**0.25

RETURN

END
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine compQ
C This subroutine computes the unknown Fluxes in the

enclosure analyzed in the program MCproject.forC

C

C

C

C

C

C

C

C

C

C

C

integer nelemt,nrings,ij

double precision emiss(69),delta(69,69),Dij(69,69),q(69),
+ T(69),area_69 ),H,sigma, K,

+ Qbot, Qtopbot, Qtot, Q54

COMMON/PROP/sigma, emiss

COMMON/ELEMT/nelemt

COMMON/SUBSTRATE 1/nrings,H

COMMON/TEMPERAT/T

COMMON/FLUX/q

COMMON/Q/Qbot,QtopboLQtot, Q54

COMMON/AREA/area

COMMON/FACTOR/Dij

COMMON/KRON EKER/delta

do i=3,nelemt

K--O.dO

do j= 1,nelemt

K=K+emiss(i)*sigma*(T(j))**4* (delta(i,j)-Dij(i,j ))

enddo

q(i)=K
Q(i)=q(i)*area(i)

enddo

1. Compute the radiative heat load on the bottom of the substrate
from the entire enclosure = Qbot0N)

Qbot--Q(6)+Q(22)+Q(38)+Q(54)

2. Compute the radiative heat load contribution from the top (T=80K)

of the substrate to the bottom (T---4K) = Qtopbot(W)

Qtopbot=0.d0
do i=6,(nelemt-nrings+ l),nrings

Qtopbot=Qtopbot +

+

+

+

+

+

+

enddo

area(i)*emiss(i)*sigma

* ( (T(i))**4 - (T(6+nrings-1))**4 *
( Dij(i,6+nrings- 1)

+ Dij(i,6+2*nrings- 1)

+ Dij(i,6+3*nrings-l)

+ Dij(i,6+4*nrings-1) ) )

3. Compute the radiative heat load on the entire substrate
from the entire enclosure = Qtot(w)
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C

C

C

C

Qtot=0.d0

do i=6,nelemt

Qtot--Qtot+Q(i)
enddo

4. Compute the radiative heat load on surface 4 (T--4K)
from surface 5 (T--80K) = Q54(W)

QS4=area(4)*emiss(4)* sigma*(T(4)* *4_T(5)**4,Dij(4,5))

return

end
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Appendix E

Thermal Conductivity Models

This appendix provides the models of the HTS thermal bridge material thermal

conductivities and the HTS thermal bridge effective thermal conductivities.

E.I Material Thermal Conductivity Model

The general thermal conductivity equation is (Lee, 1994):

k(T) : a+bT+cT2+dT3+eT4+fl'5+gT 6 • (E.1)

The constantsa,b,c,d,e,f,and g areprovided in Table E.I for the materialsstudied

in thisproject.Figure E.I shows the plotsof the materialthermal conductivities.

E.2 HTS Thermal Bridge Effeetive Thermal Conductivity Model

The general effective thermal conductivity equation is:

k,ll(T ) : a+bT+cT2+dT 3 . (E.2)

The constants a, b, c, and d are provided in Table E.2 for the HTS thermal bridges

studied in this project. Figure E.2 shows the plots of the effective thermal conductivities.
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Table E. 1. Coefficients of the Material Thermal Conductivity Model.

Material 11 BSCCO YBCO FSI YSZ GREEN Zirconia

a 1.430E-1 1.567E-1 1.565E-2 4.41ME-1 3.558E-1 -2.045E-1

b 5.445E-2 1.403E-2 2.761E-3 -2.426E-3 7.173E-2 1.159E-1

c -3.517E-3 7.463E-3 1.561E-4 9.229E-4 1.066E-2 -1.041E-3

d 1.243E-4 -2.510E-4 -3.076E-6 -2.793E-5 -3.706E-4 -2.761E-5

e -2.100E-6 3.437E-6 3.403E-8 3.772E-7 4.814E-6 6.671E-7

f 1.665E-8 -2.201E-8 -2.009E-10 -2.395E-9 -2.839E-8 -5.127E-9

5.450E-11 4.826E-13 5.839E-12 6.370E-11 1.367E-11-5.035E- 11

Table E.2. Coefficients of the HTS Thermal Bridge Effective Thermal Conductivity
Model.

Thermal

Bridge

BSCCO/

FSI

YBCO/

FSI

BSCCO/

YSZ

YBCO/

YSZ
YBCO!
GREEN

a 4.095E-2 -4.749E-2 3.678E-1 2.793E-1 -7.615E-1

b 4.611E-3 2.008E-2 1.274E-2 2.822E-2 2.916E-1

c 6.988E-5 -1.375E-4 6.400E-5 -2.715E-4 -3.604E-3

d -5.676E-7 2.505E-7 3.723E-9 8.222E-7 1.083E-5

*Note: the values for the coefficients a, b, c and d, of the effective thermal

conductivities are valid over the temperature range [4-80 K].
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Appendix F

The Fortran Subroutine KBOX3D.FOR

This subroutine, KBOX3D.FOR, was written as the adapt part of the program

ORTHO3D (provided at the end of the subroutine). KBOX3D.FOR uses the modified

Box-Kanemasu method to estimate the thermal conductivity parameters of the material

thermal conductivities in a HTS thermal bridge.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE ADAPT

c

c HP 177 version, 3-D dp Iso version - DIN

c

cSnoextensions
C ..................................................................

C ..... STEADY CONDUCTION IN A 3D HALF HTS THERMAL BRIDGE .....

C with isotropi¢ gamma
C

C ..... Material Thermal Conductivity Estimation

C Subroutine KBOX3D.VOR, written by sandrine Garcia, 1994.
C ......................................................................

INCLU DE 'common3d.f

DIMENSION T 1(NI),T2(NI),YI(NI),XI(NI,2),XT(2,NI),

+ B(2),bl(2),b2(2),

+ RES(NI),XTX(2,2),XTY(2),dgb(2),P(2,2),RI(2,2),

+ AUG(2,3),RR(2,2)

C

DIMENSION T(NI,NJ,N K)

EQUIVALENCE (F(1,1,1,1),T(I,I,I))

CSt=_____._.___=st._._._=___._.___._=___.st°_______._._-_=_=_-_-_- _-_=_=_=_
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ENTRY GRID

C

HEADER='HALF BSCCO/YSZ - L= 152.4mm'

PRINTF='K'

C

c set geometric dimensions
rL = 0.1524d0

c if there is a buffer layer (the substrate is FSI)
c¢¢ thk2=O.OOOOOO3dO

c if there is no buffer layer
thk2 = 0.0d0

rlsuperc = 0.003048d0
el = 0.0001524d0

e2 = 0.0000508d0

a = 0.003048d0

C

c zoned grid method

c set x, y and z zones
NZX= 1

XZONE(1) = rL

NCVX(1) = I00

C

C

C

C

NZY = 2

YZONE(1) = a

NCVY(1) = 4

YZONE(2) = flsuperc/2.d0

NCVY(2) = 3

NZZ= 2

c if the substrate is FSI, add 1 CV for the buffer layer
ccc NZZ= 3

ZZONE(1) = el

NCVZ(I) = 3

c if there is no buffer layer

ZZONE(2) = e2

NCVZ(2) = 2

if there is a buffer layer

ZZONE(2) = thk2

NCVZ(2) = I

ZZONE(3) = e2

NCVZ(3) = 2

C

GCC

C

G

CALL ZGRID

open(unit--99.file=' 1yby.d')

open(unit=99,file='by.100')
do i=1,102

102 is the number of data point measurements (LI)

YI(i) is the simulated measured temperature value

read(99,*)Yl(i)
enddo

close(99)

open(unit--98,file='l yby.pol')

Np is the number of parameters
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Np=2
cdB is the parameter variation used in the determination of the

c sensitivity coefficients
dB--0.01d0

c sigma isthe standarddeviationof YI(j)

sigma---O.Sd0

sigma2=sigma**2

c set convergence parameter

epsi= l.d-5

c eriteristhe convergence parameterfortheBox-Kanemasu method

criter=l.d-3

c deltal is a constant used in the convergence criterion
deltal=l.d-30

c lastk is the maximum number of iterations in the Box-Kanemasu method

lastk=15

c last is the maximum number of iterations in the steady state conduction

c problem
last=50

c it_'min is the minimum number of iterations in the steady state conduction

c problem
itrmin=8

C

Kcount= 1

iterk= 1
C

c set thermal conductivity coefficients

Bgl = 0.3558d0

C

C

C

Bg2 = 0.07173d0

Bg3 = 0.01066d0

Bg4 = -3.7060d-4

Bg5 = 4.814d-6

Bg6 = -2.839d-8

Bg7 = 6.37d-11

Byl = 0.4464d0

By2 = -O.002426d0

By3 = 9.229d-4

By4 = -2.793d-5

By5 = 3.772d-7

By6 = -2.395d-9

By7 = 5.839d-12

Bfl = 0.01565d0

Bf'2 = 0.002761d0

BI3 = 1.561d--4

Bf4 = -3.076d-6

Bf5 = 3.403d-8

Bf6 = -2.009d-10

Bf7 = 4.826d-13

Bzl = -0.2045d0

Bz2 = 0.1159d0

Bz3 = -O.001041dO

Bz4 = -2.76 ld-5

Bz5 = 6.671d-7
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C

C

Bz6 = -5.127d-9

Bz7 = 1.367d-11

Bybcol = 0.1567d0

Bybco2 = 0.01403d0

Bybco3 = 0.007463d0

Byb¢o4 = -2.5 ld-4

Bybco5 = 3.437d-6

Bybco6 = -2.201d-8

Bybco7 = 5.45d-ll

Bbsccol = 0.143d0

Bbscco2 = 0.05445d0

Bbscco3 = -0.003517d0

Bbscco4 = 1.243d-4

Bbscco5 = -2.1d-6

Bbscco6 = 1.665d-8

Bbscco7 = -5.035d-11

C

c set input heat flux (WIre*K)

c - if the thermal bridge is YBCO/GREEN

Qyg = 2415.429d0

c - if the thermal bridge is YBCO/YSZ

Qyy = 483.237d0

c - if the thermal bridge is BSCCO/YSZ

Qby = 380.095d0

c - if the thermal bridge is YBCO/FSI
Qyf = 260.383d0

c - if the thermal bridge is BSCCO/FSI

Qbf = 157.302d0
C

C Give first estimates for the parameters to be estimated

b l(l)=Bbscco4

b l(2)=Bbscco5
RE'I]JRN

Ci___i_i___i_i i__ i_i_i°_ i i i i i°_ i _ i°tl.l.i i i i._.i._.i Ii i i.i

ENTRY BEGIN

C

C

TITLE(l)=' TEMPERATURE'

KSOLVE(1)= 1

r._pRn_( l )=o
KPLOT(I) =0
1TER=0

KSTOP=0

set initial temperatures
do K=I,NI

do J= I,M 1

open(unit= 14,file='bf. 100')
do I=I,LI

read(14,*)T(IJ,K)
enddo

close(14)
enddo

enddo
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C

if (Kcount.eq.l) then

set parameter values to bl(j)

do j= l,Np
B(j)=bl (.j)

enddo

endif

if (Kcounteq.2) B(Kj)=B(Kj)*(I.d0+dB)

if (Kcount.eq.3) then

alpha=alpha/2.d0
do j=l,Np

B(j)=b 1(j)+alpha*dgb(j)
enddo

endif

QOUT0 = O.DO

RETURN

ENTRY OUTPUT

C

2O3

C

210

+

220

+

2OO

C

¢

C

C

202

201

C

QIN = 0.D0

QOUT = 0.O0
DO 203 J=2,M2

DO 203 K=2,N2

QIN = QIN + YCV(J)*ZCV(K)*FLUXLI(J,K,I)

QOUT = QOUT + YCV(J)*ZCV(K)*FLUXII(J,K,1)
CONTINUE

DO 200 IUNIT=IUI,IU2

IF(ITER.EQ0) WRITE(IUNIT.210)
FORMAT(2X.'ITER'.3X,T(LI,M2.1 I)',6X,'T(L1,M2,12)',12X,

'QIN'. 14X.'QOUT, 10X,'NTC(1)')

WRITE(IUNIT,220)ITER,T(L I,M2,1 I),T(LI,M2,12),QIN,QOUT, NTC(1)

FORMAT(2XJ4.3X,I PE I1.3,5X,IPEI 1.3,TX,IPEI2.3,7X,IPEI2.3,

7X,I2)

CONTINUE

create a convergence criterion

IF (ITER.LT.ITRMIN) RETURN

DIFF = ABS((QOUT-QOUT0)/(QOUT+SMALL))

QOUT0=QOtrr
IF (DIFF.LE.epsi.OR.ITER.EQ.LAST) THEN

calculate overall energy balance

HTBAL = QIN + QOUT

EBAL = ABS(HTBAL/QIN)

DO 201 IUNIT=IUIjU2

WRITE(IUNIT,202)EB AL

FORMAT(/,2X,'EB AL'. 1PE 11.3,/)

CONTINUE

If (Kcount.eq.l} then

First part in the Box-Kanemasu Method
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c get numerical temperature solution for BO)=bl(j)

¢ So is the sum of squares for the B(j)=bl(j) parameter values
So=0.d0

do i=l,Ll

TI (i)=T(i,M2,11)

RES(i)=YI(i)-TI(i)

So=So+(RES(i))**2/sigma2
enddo

Kcount=Kcount+ 1

Kj=I

go to 13
endif

C

If (Kcount.eq.2) then

c Second part in the Box-Kanemasu Method

c get numerical temperature solutions for B(Kj)=B(Kj)*(1.d0+dB),Kj fixed
c determine sensitivity coefficients

c reinitialyze B(Kj)

B(Kj)=bl(Kj)

do i--l,L1

T2(i)=T(i,M 2,11)

XI(i,Kj)=(T'2(i)-T 1(i))/(B (Kj) *dB )

XT(Kj,i)=XI(i,Kj)

enddo

C

C

C

C

G

C

if (Kj.IL2) then

Kj=Kj+I

go to 13
¢1s¢

determine matrix XTX(Np,Np)

do j=l,Np

do k=l,Np

XTX(j J_)--0.d0

do i=l.Ll

XTX(j.k )=XTX(j.k)+XT(j.i)*XI(i.k)/sigma2
enddo

¢nddo

enddo

determine vectorXTY(Np)

do j= l.Np

XTYO)--O.dO

do i=l,Ll

XTY(j )=XTY(j)+XT0,i)* RES(i)/sigma2
enddo

enddo

Solve XTX*P=RI for P using the gaussian elimination method

fu'st define RI(Np,Np), the matrix identity

do j= l,Np

do k=l,Np

if (k.eq.j) then

RI(j,k)=l.d0

else

RI(j,k)--0.d0
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endif

enddo

enddo

C

c solve successively each column of P

do i=l,Np

C *form the Np*(Np+l) augmented matrix AUG by adjoining RI to XTX

DO i=l,Np

DO j=l,Np

AUG(i,j)=XTX(i,j)
ENDDO

ENDDO

DO i=l,Np

AUG(i,Np+ 1)=RI0,1)
ENDDO

DO 1070 i=l,Np

C *locate nonzero diagonal entry

IF (AUG(i,i).eq.0.D0) THEN
PIVOT=0.D0

j=i+l
1030 IF ((PIVOT.eq.0.D0).AND.(j.le.Np)) THEN

IF (AUG(j,i).ne.0.D0) PIVOT=j
GO TO 1030

ENDIF

IF (PIVOT.eq.0.D0) THEN

STOP 'MATRIX IS SINGULAR'

ELSE

C *interchange rows i and PIVOT
DO 1040 j=l,Np+l

TEMP=AUG(i,j)

AUG(i,j)=AUG(PIVOT,j )

AUG(PIVOTd)=TEMP

1040 CONTINUE

ENDIF

ENDIF

C *eliminate ith unknown from equations i+l ..... Np

DO 1060 j=i+l,Np

RMULT=-AUG(j,i)/AUG(i,i)

DO 1050 k=i,Np+l

AUG(j,k)=AUG(j,k)+RMULT*AUG(i,k)

1050 CONTINUE

1060 CONTINUE

1070 CONTINUE

C *find the solutions

P(Np,I)=AUG(Np.Np+I )/AUG(Np,Np)

DO 1090 j=Np-l,1.-I

P(j,1)=AUG(j,Np+ 1 )

DO 1080 k=j+l,Np

P(j,I)=P(.j,I)-AUG(j,k)* P(ILI)
CONTINUE

P(j,I)=P(j,I)/AUG(j,j)
CONTINUE

enddo

1080

1090

C

C check the correlation matrix before getting to the parameter estimation
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The diagonal terms of the correlation matrix are all unity and the off

-diagonal terms must be in the interval [-1,1]. Whenever all the off

-diagonal terms exceed 0.9 in magnitude, the estimates are highly
correlated and tend to be inaccurate

write(98,'(/,"The correlation matrix is')')

do j=l,Np
do k=l,j

ar=-P(j,j)*P(k,k)

RR(j,k)=P(j,k)/sqrt(a_)

enddo

enddo

do j=I,Np

write(98,'(3E15.7)') (RR(j,k),k=l j)
enddo

C

c determine vector dgb(Np)

do j=l,Np

dgb(j)=0.d0

do k=l,Np

dgb(j)=dgb(j)+P(j,k)*XTY(k)

enddo

enddo

C

c G isa measure of the slope;itshould approach zero atconvergence
G=0.d0

do j=l,Np

sum--O.dO

do k=l,Np

sum=sum+XTX(j,k)*dgb(k)
enddo

G--G+dgb(j)*sum

enddo

C

c Third part in the Box-Kanemasu Method

c By the definition of G. it should always be positive

if (G.it.0.d0) then

write(98,*)'G is negative ! Terminate calcniations'

go to 12

endif

C

Fourth part in the Box-Kanemasu Method

alpha=2.000dO

AA=I.Id0

Kcount= Kcount+ i

go w 13

endff

endif

If (Kcount.cq.3) then

Salpha is the sum of squares for the Bcoef(jj=bl(j)+alpha*dgb(j) parameter

values. Salpha decreases towards a positive constant and should be less
than So

Salpha--0.d0

do i=l,Ll

T1 (i)=T(i,M2,11 )
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C

RES(i)=YI(i)-TI(i)

Salpha=Salpha+(RES(i))**2/sigma2

enddo

if (Salpha.gt.So) then

if (alpha.le.0.01d0) then

write(98,*)'alpha is too small !'

write(98,'(" alpha = ",F12.6,2x," Salpha = ",E15.6,

2x,"So = ",E15.6)')alpha, Salpha, So

go to 12
else

go to 13

endif

endif

sumch=So-alpha*G*(2.d0-1 .d0/AA)

c h is a scalar interpolation factor; its a fraction of the Gauss step

c given by the Box-Kanemasu method

if (Salpha.gt.sumch) then

h=alpha**2*G/(Salpha-So+2.d0*alpha*G)
else

h=alpha*AA
endif

C

c Calculate the final parameter estimates using h
c Also calculate ratio; if it is less than criter, then the change in

c the estimated parameters is insignifiant and the iterative process is

c terminated, change is used to determine when all parameters stop varying

change--O

do j=l,Np

b2(j)=b l(j)+h*dgb(j)

ratio=abs(b2(j)-bl(j))/(abs(bl(j))+deltal)

ff (ratio.le.criter) change=change+l

enddo

endif

C

c Print out the calculate values for h, G, So and Salpha

write(98,1300)

1300 format(5x,'iter'. 10x,'h', 13x,'G', 12x,'So', 11 x,'Salpha')

write(98,130 l)iterk,h,G,So,Salplaa

1301 format(I8.4E 14.6J)

C

c Print out the final parameter estimates
write(98,*)'I'he final parameter estimate for this iteration is'

write(98,1310) (b2(j),j=l,Np)

1310 format(3El6.6)
C

c Print out the P matrix

write(98,'(/,"The P ma_ix is') ')

do j= l.Np
write(98,1320) (P(j,k),k=l,Np)

enddo

1320 format(3D15.7)

C

if (Np.gt.change.and.iterk.le.lastk) then
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C

C

12

do j---t,Np
bl(j)=b2(j)

enddo

Kcount= 1

iterk=iterk+ 1

go to 13
endif

close(iu2)

close(98)
STOP 'K ESTIMATION DONE'

C

13 KSTOP=I

ENDIF

RETURN

ENTRY PHI

C

c set conductivities

DO 300 K=2,N2
DO 300 J=2,M2

DO 300 I=2,L2

C

C

CcC

CCC

CCC

CCC

ccc

CCC

C

C

CCC

ccc + + Bf3*T(I,J,K)**2

ccc + + Bf4*T(I,J,K)**3

ccc + + BfS*T(I,J,K)**4

ccc + + Bf6*T(I,J.K)**5

ccc + + Bf7*T(I.J,K)**6

ELSE
C

IF (Z(K).LE.el) THEN

if the substrate is the GREEN PHASE :

GAM(Ij,K) -- Bgl + Bg2*T(I,J,K)

+ + Bg3*T(LJ, K)**2

+ + Bg4*T(LJ, K)**3

+ + Bg5*T(I,J,K)**4

+ + Bg6*T(I,J,K)**5

+ + Bg7*T(I,J,K)**6
if the substrate is YSZ :

GAM(I,J,K) = By1 + By2*T(I,J,K)

+ + By3*T(I,J,K)**2

+ + By4*T(I,J,K)**3
+ + By5*T(I,J,K)**4

+ + By6*T(LJ, K)**5

+ + ByT*T(I,J,K)**6
if the substrate is FSI :

GAM(I,J,K) = Bfl + Bf2*T(I,J,K)

IF (Z(K).GT.eI.AND.Y(J).LT.a) GAM(IJ,K) = 0.d0

C

c if there is a buffer layer (the substrate is FSI)

ccc IF CL(K).GT.e 1.AND.Z(K).LE.(e 1+thk2).AND.

ccc + Y(J).GE.a) THEN

ccc GAM(I,J,K) = Bzl + Bz2*T(I,J,K)

ccc + + Bz3*T0.J,K)**2

200



cc_

C

+ + BIA*T(I,J,K)**3

+ + Bz5*T(I,J,K)**4
+ + Bz6*T(I,J,K)**5

+ + BzT*T(I,J,K)**6

ENDIF

C

Ccc

C(_C

Ccc

CCC

C

IF (Z(K).GT.(e 1+thk2).ANDZ(K).LE.(e 1+thk2+e2).AND.

+ Y(J).GE.a) THEN

ff the superconductor is YBCO :
GAM(IJ,K) = Bybcol + Bybco2*T(IJ,K)

+ + Bybco3*T(I,J,K)**2

+ + Bybco4*T(IJ,K)**3

+ + BybcoS*T(Ij,K)**4

+ + Bybco6*T(I,J,K)**5

+ + Bybco7*T(I,J,K)**6

if the superconductor is BSCCO :

GAM(I,J,K) = Bbsccol + Bbscco2*T(I,J,K)

+ + Bbscco3*T(I,J,K)**2

+ + B(I)*T(I,J,K) *'3

+ + B(2)*T(I,J,K)**4

+ + Bbscco6*T(I,J,K)**5

+ + Bbscco7*T(I,J,K)**6

ENDIF

ENDIF

300 CONTINUE

C

c set boundary conditions

DO 310 K=2,N2

DO 310 J=2,M2

KBCLI(J,K) = 2

c - for the substrate

IF (Z(K).LE.el) THEN

FLXCLI(J,K) = Qyf

ELSE

C

C

CCC

CC£

¢OC

C

C

310

C

320

C

- if there is a buffer layer

IF (y(J).GE.a.AND.Z(K).GT.e I.ANDZ(K).LE.

+ (el +thk2)) THEN

FLXCLI(J,K) = Qbf

ENDIF

- for the superconductor

IF (y(J).GE.a.AND.Z(K).GT.(e i +thk2).AND.Z(K).LE.

+ (el +thk2+e2)) THEN

FLXCLI(J,K) = Qyf

ENDIF

ENDIF

CONTINUE

DO 320 K=2,N2

DO 320 I=20L2

KBCJI(I,K)=2

KBCM1 (I,K)=2

CONTINUE
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330

C

DO 330 J=2,M2
DO 330 I=2,L2

KBCKI(LJ)=2

KBCNI(LJ)=2
CONTINUE

RETURN

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
**********************************************************************

PROGRAM ORTHO3D

* Control Volume Method solution of three-dimensional, isotropic
* heat conduction

* User portion of code contained in layer*.f

* layer3d.f - standard user subroutine
,

* RS/6000 version - double precision
,

* Program sUructure similar to that detailed in

* "Computation of Conduction and Duct Flow Heat Transfer",

* S.V. Patankar, Maple Grove, MN: Innovative Research, Inc.

* Modified by Sandrine Garcia to implement the Box-Kanemasu estimation procedure

* (see subroutine KBOX3D.FOR) and to compute the dimensionless sensitivity

* coefficients. (see subroutine XI3D.FOR).

*************************************************************************

INCLUDE 'common3d.f

C

CALL DEFLT

CALL GRID

CALL READY

CALL BEGIN

C

93

C

10 CONTINUE

c start iteration of outer loop
CALL OUTPUT

c check to see if convergence has occured

IF (KSTOP.NE.0) go to 93
CALL HEART
GO TO 10

STOP

END
*********************************************************************

c include other subroutines in invariant part
INCLUDE 'defrd3d.f

INCLUDE 'heart3d.f
INCLUDE 'solve3d.f

INCLUDE 'tools3d.f
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Appendix G

The Fortran Program KBOXEFF.FOR

This program, KBOXEFF.FOR, uses the modified Box-Kanemasu method to estimate

the effective thermal conductivities of the HTS thermal bridges. KBOXEFF.FOR has the

ability to estimate these thermal properties either as functions of temperature or as

constants. This program was written by Sandrine Garcia, 1994.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

Program Kboxeff
C

integer Np, max,iterk.lastk,set

double precision T,z, sigma, criter,

+ So,Salpha, G,deltal

double precision B(l),bl(1),b2(1),Texact(102),sol(10),

+ X( 102),T1 (102),T'2(102),YY(I020),YI(102),

+ XI(102,1 ),XT(I,102),XTX(1,1 ),XTY(1),RES(102),

+ dgb( I),P(I,1),RI(1,1),AUG(I,2),RR(1,1)

ccc + X(102),TI (500),T2(500),YY(5000),YI(500),

ccc + XI(500,1 ),XT( 1,500),XTX( 1,1 ),XTY( 1),RES(500),

ccc + dgb( I),P(I,I),RI(I, I),AUG(1,2),RR(I,I)

C

C

C

c

COMMON/BCOEF/B

COMMON/b 1COEF/b 1
COMMON/LENGTH/X

open(unit--98, file='o I ybf.eff)
SET THE CONSTANTS

Np is the nmnber of paxameters to study

Np=l

max is the number of points
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c if T(x) is used to estimate the parameters
max=102

c if _ is used to estimate the parameters
ccc max=500

maxL=102

c sigma isthe standarddeviationof YI(j)

sigma=0. IdO

sigma2=sigma**2

c criteris theconvergence parameterfor theBox-Kanemasu method
criter=l.d-4

c deltal is a constant used in the convergence criterion
deltal=l.d-30

c lastk is the maximum number of iterations in the Box-Kanemasu method
lastk=10

C

c if the exact temperatures from ORTHO3D are used as measured data

ccc open(unit--99,file='bf.10ft)
ccc do i=l,maxL

ccc read(99,*)Texact(i)

c if T(x) is used to estimate the parameter
ccc YI(i)=Texact(i)

ccc enddo

c if TL is used to estimate the parameter
ccc do i= l,max

coc Yl(i)=Texact(maxL)

ccc enddo

if simulated temperattwe are used as measured data

read Y'YI(i) which contains 10 simulated data sets

c if T(x) is used to estimate the parameter

open(unit--99,file='o I ybf.d')
do i=1,1020

read(99,*)YY(i)
enddo

c if TL is used to estimate the parameter

ccc open(unit=99,file=' 1yLbf.d')
ccc do i= 1,5000

ccc read(99,*)YY(i)
ccc enddo

close(99)
C

c LOOP ON THE NUMBER OF DATA SETS

DO 999 SET=I,10

write(98,*)
************************************************************

write(98.*)'SET NUMBER: '.SET

C

C

do i=l,max

if T(x) is used to estimate the parameter

YI(i)=YY(i+ 102*(SET- 1))

c if TL is used to estimate the parameter

ccc YI(i)=Y'Y(i+500*(SET- 1))
enddo

C

c def'me X(i),the position vector and initialize the bl vector
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call init

C

c start Box-Kanemasu method

iterk = 0

1 iterk = itcrk+l

C

c set parameters values to bl(j)

B(1) = bl(1)

C

c First part in the Box-Kanemasu Method

c solve for T(x) using B(j)=bl(j);

c if keff is a polynomial use the bisection method

c ff T(x) is used to estimate the parameter

ccc TI(1) = 4.d0

cCC do i=2,max
ccc z = X(i)

ccc call dichot(z,T)

ccc Tl(i) = T

ccc enddo

c if TL is used to estimate the parameter

ccc z = X(maxL)

ccc call dichot(z,T)

ccc do i= l,max

ccc Tl(i) = T

ccc enddo

c if keff is a constant

do i= l,max

c ifT(x) is used to estimate the parameter

Tl(i)=157.302d0/B(1)*X(i)+4.d0

c ifTL is used to estimate the parameter

ccc TI (i)= 157.302d0/B(l )*X(maxL)+4.d0

enddo

C

c So is the sum of squares for the Bcoeffj)=bl(j) parameter values

So=O.d0

do i= 1,max

RES(i)=YI(i)-TI(i)

So=So+(RES(i))**2/sigma2

enddo

C

c

c

c

c

c

c

ccc

c

cc_

C

c

c

ccc

ccc

start sensitivity study

iterate on Np, the number of parameters to study

do 20 Kj=I,Np

if keff is a polynomial, determine XI numerically

dB is the parameter variation used in the determination of the

sensitivity coefficients

dB = 0.01d0

modify B(Kj)

B(Kj) = B(Kj)*(1.d0+dB)

solve for T2 (including the influence of dB) using the bisection method

if T(x) is used to estimate the parameter

T2( I) = 4.d0

do i=2,max
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CCC

C

C(Xt

C

C

C

c

C(_C

C

C

z = X(i)

call dichot(z,T)

T2(i) = T
enddo

if TL is used to estimate the parameter

z = X(maxL)

call dichot(z,T)
do i= l,max

T2(i)= T

enddo

reinitializeB(Kj)

B(Kj) = bl(Kj)

study XB(Kj)

do i=lanax

XI(i,Kj) = (T2(i)-TI(i))/tB(Kj)*dB)

XT(Kj,i)=XI(i,Kj)

enddo

if keff is a constant, determine XI analytically
do i=l,max

c ff T(x) is used to estimate the parameter

XI(i, Kj)=- 157.302d0*X(i)/B (Kj) *"2

c ff TL is used to estimate the parameter

ccc XI(i,Kj)=- 157.302d0*X(maxL)/B(Kj)**2

XT(Kj,i)=XI(i,Kj)
enddo

20 continue

C

c determine matrix XTX(Np,Np)

do j=l,Np

do k=l,Np

XTX(j,k)---0.d0
do i=l,max

XTX(j,k }=XTX(j,k)+XT(j,i)*XI(i,k)/sigma2
enddo

enddo

enddo

C

C determine vector XTY(Np)

do j=I,Np

XTY(j)=0.d0

do i= l,max

XTY(j)=XTY(j )+XT(j,i)*RES(i)/sigma2
enddo

enddo

Solve XTX*P=RI for P using the gaussian elimination method

first define RI(Np,Np), the matrix identity

do j=l.Np

do k=l.Np
if (k.eq.j) then

RI(j,k)=I.dO

else
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RI(j,k)---O.dO

endif

end_

enddo

C

c solve successively each column of P

do l=l,Np
C *form the Np*(Np_l) augmented matrix AUG by adjoining RI to XTX

DO i=l,Np

DO j=l,Np

AUG(ij)=XTX(i,j)

ENDDO

ENDDO

DO i=l,Np

AUG(i,Np+I)=RI0,1)

ENDDO

DO 1070 i=l,Np

C *locate nonzero diagonal entry
IF (AUG(i,i).eq.0.D0) THEN

PIVOT---0.D0

j=i+l

1030 IF ((PIVOT.eq.0.D0).AND.(j.le.Np)) THEN

IF (AUG(j,i).ne.0.D0) PIVOT=j
GO TO 1030

ENDIF

IF (PIVOT.eq.0.D0) THEN

STOP 'MATRIX IS SINGULAR'

ELSE

C *interchange rows i and PIVOT

DO 1040 j=l,Np+l

TEMP=AUG(i,j)

AUG(i,j)=AUG(PIVOT,j)

AUG(P1VOT,j)=TEMP
1040 CONTINUE

ENDIF

ENDIF

C *eliminate ith unknown from equations i+l ..... Np

DO 1060 j=i+l,Np

RMULT=-AUG(j,iyAUG(i,i)

DO 1050 k=i,Np+l

AUG(j,k)=AUG(j,k )+RM ULT*AUG(i,k)

1050 CONTINUE

1060 CONTINUE

1070 CONTINUE

C *find the solutions

P(Np,I)=AUG(Np,Np+ 1)/AUG(Np,Np)

DO 1090 j=Np-l,l,-1

P(j,I)=AUGtj,Np+I)

DO 1080 k=j+l,Np

P(j,I)=P(j,I)-AUG(j,k)*P(k,I)
1080 CONTINUE

P(j,1)=P(j,I)/AUG(j _j)

1090 CONTINUE

enddo

C
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C

C

determine vector dgb(Np)

do j=l,Np

dgb(j)=O.dO

do k=l,Np

dgb(j)=dgb(j)+P(j,k)*XTY(k)

enddo

¢nddo

G is a measure of the slope;itshould approach zero atconvergence

G=0.d0

do j= l,Np
sum=O.d0

do k= l,Np

sum=sum+XTX(j,k) *dgb(k)

enddo

G=G+dgb(j)*sum

enddo
C

c Third part in the Box-Kanemasu Method

c By the definition of G, it should always be positive
if (G.it.0.d0) then

write(98,*)'G is negative ! Terminate calculations'

goto5
endif

C

c Fourth part in the Box-Kanemasu Method

alpha=2.000d0
AA=I.ld0

2 alpha=alpha/2.d0

do j=l,Np
B (j)=b 1(j)+alpha*dgb(j)

enddo

C

c solve for T(x) using B(j)=bl(j)+alpha*dgb(j);

c if keff is a polynomial use the bisection method

c if T(x) is used to estimate the parameter
ccc TI(1) = 4.d0

ccc do i=2,max

coc z = X(i)

ccc call dichot(z,T)

ccc Tl(i) = T

ccc enddo

c if TL is used to estimate the parameter

ccc z = X(maxL)

ccc call dichot(z,T)

ccc do i= 1,max

ccc Tl(i) = T

ccc enddo

c ifkeffisa constant

do i=l,max

c ifT(x) isused to estimatetheparameter

Tl(i)=157.302d0/B(1)*X(i)+4.d0

c ifTL isused toestimatethe parameter

ccc Tl (i)=157.302d0/B(l)*X(maxL)+4.d0

enddo
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C

c Salpha is the sum of squares for the Bcoef(j)=bl(j)+alpha*dgb(j) parameter
c values. Salpha decreases towards a positive constant and should be less

c than SO

Salpha=0.d0
do i=l,max

RES(i)=YI(i)-TI(i)

Salpha=Salpha+(RES(i))** 2/sigma2
enddo

C

if (Salpha.gt.so) then

+

goto5

else

goto 2

endif

endif

if (alpha.le.O.01d0) then

write(98,*)'alpha is too small !'

write(98,'("alpha = ",F12.6,2x,"Salpha = ",E15.6,

2x,"So = ",E15.6)')alpha, Salpha, So

C

sumch=so-alpha*G*(2.d0- I.d0/AA)
c h is a scalar interpolation factor; its a fraction of the Gauss step

c given by the Box-Kanemasu method
if (Salpha.gt.sumch) then

h=alpha** 2*G/(Salpha-So+2.d0*alpha*G)
else

h=alpha*AA

endif

C

c Calculate the final parameter estimates using h

c Also calculate ratio; if it is less than criter, then the change in

c the estimated parameters is insignifiant and the iterative process is

c terminated, change is used to determine when all parameters stop varying

change--O

do j= I,Np
b2(j)=bl(j)+h*dgb0)

ratio=abs(b2(j)-b 1(j))/(abs(b 1(j))+delta!)

if (ratio.le.criter) chang_-change+l

¢nddo

C

C Print out the calculate values for h, G, So and Salpha

write(*, 1300)

write(98,1300)

1300 format(5x,'iterk',lOx:h',13x,'G',12x,'So',l lx,'Salpha')

write(*, 1301 )iterk,h,G,So, Salpha

write(98,130 l)iterk,h,G,So,Salpha

1301 format(I8,4El4.6,/)
C

c Print out the final parameter estimates

write(98,*)"rhe final parameter estimates for this iteration are'

write(*,*)'rhe final parameter estimates for this iteration are'

write(98,1310) (b2(j)d=l,Np)

write(*,1310)(b2(j),j=l,Np)

1310 format(El6.6)
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C

c Print out the P matrix

write(98,'(/,"rhe P matrix is")')

do j=l,Np

write(98,1320) (P(j,k)J_--1,Np)
enddo

1320 format(D15.7)
C

c Determine and print out the correlation matrix

c The diagonal terms of the correlation matrix are all unity arid the off

c -diagonal terms must be in the interval [-l,l]. Whenever all the off

c -diagonal terms exceed 0.9 in magnitude, the estimates are highly
c correlated and tend W be inaccurate

write(98,'(/,'_Une correlation matrix is")')

do j=l,Np

do k=l,j

ar=P(jj)*P(k,k)

RR(j ,k)=P(j,k)/sqrt(ar)
enddo

enddo

do j=t,Np
write(98,'(E15.7)') (RR(j,k),k= 1,j)

enddo

C

ff (Np.gt.change.and.iterk.le.lastk) then

do j=l,Np

bl(j)=b20)
enddo

goto 1
endif

C

c for the estimation of a constant effective thermal conductivity
c store final estimate

sol(SET)=b2(1)
999 CONTINUE

C

c come here to perform statistic calculations for the 10 data sets
c compute the mean value of the estimates

mean=0.d0

do i=l,10

mean=mean+sol(i)
enddo

mean--mean/10.d0

c compute the standard deviation
dev=0.d0

do i=l,10

dev=dev+(sol(i)-mean)**2

enddo

dev=sqrt(dev/9.d0)

c compute the 95% confidence interval for the mean value

confint=2.262d0*dev/sqrt(10.d0)

write(98,*)
write(98,1310)'mean= ',mean

write(*, 1310)'mean= ',mean

write(98.1310)'95% confidence interval= ',confint
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write(*,1310)'95% confidence interval= ',confint

write(98,1310)'standard deviation of the sample= ',dev

write(*,1310)'standard deviation of the sample= ',dev

1310 format(El6.6)
C

5 close(98)

STOP 'K ESTIMATION DONE'

END

subroutine init

C

C

integer maxLi

double precision L
double precision bl(1)_g(102)

COMMON/b 1COEF/b 1

COMMON/LENGTH/X

C

c define position vector

c (so that it is equivalent to 100 CV in the x-direction in ORTHO3D)
L = 0.1524d0

maxL= 102

X(1)=O.d0

X(2)=L/(100.d0*2.d0)

do i=3,(maxL-l)

X(i) = X(i-1)+L/lOO.dO

enddo

X(m_xL) = L

c define initial estimate for the parameter studied

b1(1) = 3.0d-1
C

return
end

subroutine dichot(x,T)

C

C

C

C

C

C

C

C

integer Kcount

double precision Byy2,Byy3,Byy4,
+ x,T, al,a2,c,qin,lCQal,Qa2,Qc,epsi,Poly

double precision B(I)

COMMON/BCOEF/B

COMMON/Byy/Byy2,Byy3,Byy4

define thermal conductivity coefficients not studied as parameters

Byy2 = 2.78287d-2

Byy3 = -3.02917d-4

Byy4 = 1.26054d-6

define input heat flux

qin = 483.237d0

define limits of the interval studied [al.a2] for the T range

al = 3.d0

a2 = 100.d0
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C

C

C

10

C

C

C

define constant K in the T solution

K = 4.d0*B(l)+8.d0*Byy2+4.d0**3/3.d0*Byy3+64.d0*Byy4

solve for T(x) using the bisection method
Kcount = 0

Kcount = Kcotmt+l

Qal = Poly(al)-(qin*x+K)

Qa2 = Poly(a2)-(qin*x+K)

c = (al+a2)/2.d0

Qc = Poly(c)-(qin*x+K)

if ((Qal*Qc).le.0.d0) then
a2=¢

else

al =c

endif

epsi = (abs(Qal)+abs(Qa2))/2.d0

if (Kcount_gt.1000) STOP 'Kcount greater than I000'

if (epsi.gt.ld-4) then

go to 10
else

T=¢

endif

return

end

double Necision function Poly(T)
C

C

C

C

double precisionT,Byy2,Byy3,Byy4

double precisionB(1)

COMMON/BCOEF/B

COMMON/B yy/Byy2J3yy3,Byy4
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Appendix H

The Fortran Program YI.FOR

This program, YI.FOR, reads a file of numerical temperatures obtained using

ORTHO3D for a specific HTS thermal bridge and adds random errors to simulate

measured temperatures. Sets of simulated temperatures are obtained both along the

thermal bridge and at the warm end. The simulated measured temperatures are then used

for the estimation of the thermal conductivity parameters. This program was written by

Sandrine Garcia, 1994.

C

C

PROGRAM YI

COMMON/RAND/LI,STDDV

COMMON NDAT

DIMENSION DATA(20000)

DIMENSION T(102)

LI=102

STDDV= 1.0d0

C

c read the numerical temperatures obtained using ORTHO3D

open(unit=30,file='bf. 100')
do i=l,L1

read(30,*)T(i)
©nddo

close(30)

C

open(unit=2,file=' I yLbf.d')
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CCC

C

CCC

open(unit=2,file='o lyb f.d')

open(unit=50,file='Nseed')

do j=l,10

do j=l,50
call random(data)

c Addition of random errors to calculated numerical Temperatures T(x)

ccc do i=l,Ll
ccc Y=T(i) + data(i)

c Addition of random errors to calculated numerical Temperatures T(LI)

do i=l,100

Y=T(LI) + data(i)

write(2,*)Y
enddo

enddo

close(50)

close(2)

C

stop
end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

Subroutine random(data)

c See Numerical Recipes by Press, Flannery, Teukolsky and Vetterfing,

c Cambridge Press, 1986 about page 192

Modified by J.V. Beck, Michigan State UniversityC

C

C

II

12

5O0

COMMON/RAND/LI,STDDV
COMMON NDAT

parameter(PI=3.14159265,NBIN= 1000)
Dimension data(20000)

read(50,*)idum
NDAT=L I +NBIN

rhon=0.0

rhod=0.0

do 500 idumi=l,1

data(1)=gasdev(idum)*STDDV
do 11 i=2,L1

data(i)=gasdev(idum)* STDDV

rhon=rhon+data(i- l)*data(i)
rhod=rhod+data(i)*data(i)

continue

continue

rho=rhon/rhod

call moment(data, i- l.ave, adav,sdev,var,rho)
continue

write(*,*)' Values of quantities'

write(*,'(Ix,T29,A,T42,A/)')' Sample ',' Expected'
write(*,'(l x,A,T25,2F 12.4)')'Mean :',ave,0,0

write(*,'(Ix, A,T25,2F12.4)')'Average Deviation :'.adev,STDDV

write(*,'(Ix, A,T25,2F12.4)')'Standard Deviation :',sdev,STDDV
varth=stddv*stddv

write(*,'( 1x,A,T25,2F 12.4 )')'Variance :',var, varth

write(*,'( lx, A,T25,F12.4)')'Est. Correlation Coeff.',rho

write(*,*)'Average deviation comes from use of absolute values'
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retm'n

end

C_ ___._____t__ _._°_____ • _____._._____°_°___________.#___t________.___- •

Subroutine moment(data,n,ave,adev,sdev,var,rho)

11

12

C

Dimension data(20000)

If (n.le.1) pause 'n must be at least 2'
s---O.

sd=O.

sn=O.

do 11 j=l,n
s=s+data(j)

if (j.eq.l) goto 11

sn=sn+data(j)*data(j- 1)

sd=sd+data(j)+dataG)
continue

ave=s/n

adev--0.

vat=0.

do 12 j=l,n

s=data(j)-ave

adev=adev+abs(s)

p=s*s

var=-var+p
continue

adev=adcv/n

var=-var/(n-l)

sdev=sqrt(var)
rho=sn/sd

return
end

CS __ =s __ It _s .if, _ _.It.__il, ___ • _s =s _lib.s_It.(t. __ II' °(i ._-II' -It-s-_ -i-s- s -i-lt - s-il_ o_-II'

Function ran l(idum)

c Rctm'ns uniformly distributed numbers between 0 and 1
C

Dimension R(97)

Parameter (M l =259200,IA I=7141,IC l =54773,RM I =3.85802 47E-6)

Parameter (M2=I34456,IA2=8121_IC2=28411,RM2=7.4373773E-6)

Parameter (M3=243000_IA3=4561,IC3=51349)
Data IFFIOI

C

11

if (idum.lt0.or.IFF.eq.0) then

IFF= 1

IX 1=MOD(IC l-idum, M 1)

IX 1=MOD(IA 1*IX 1+IC 1,M 1)

IX2=MOD(IXI,M2)

IX 1=MOD(IAI*IX 1+IC 1,M 1)

IX3=MOD(IX I,M3)

do 11 j=1,97

IX I=MODOAI*IX 1+IC I,M 1)

IX2=MOD(IA2*IX2+IC2,M2)

R(j)=(FLOAT([X 1)+FLOAT(IX2)* RM 2)*RM 1

continue
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C

idum=l

endif

IX I=MOD(IAI*IX 1+IC I,MI)

IX2=MOD(IA2*IX2+IC2,M2)

IX3=MOD(IA3 *IX3+IC3,M3)

j=I+(97*IX3)/M3

ff (j.gt.97.or.j.It. I ) pause
ranl=R0)

R(j)=(FLOATfIXI)+FLOAT(IX2)*RM2)*RM 1

return
end

Function gasdev(idum)
c Uses Box-MuUer transformation fron uniform distribution to normal
c distribution with unit standard deviation

C

DATA ISET/0/

C

1

C

if (ISET.e,q.0) then

vl=2.*ranl (idum)-l.
v2=2.*ranl(idum)-l.
R=vl**2+v2**2

if (R.ge.1..or.R.eq.0.) goto 1

fac=sqrt(-2.* LOG(R)/R)

gset=v l*fac

gasdev=v2*fac
ISET= 1

else

gasdev=gset
ISET=0

endif

return
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Appendix I

The Fortran Subroutine XI3D.FOR

This subroutine, YI.FOR, was written as the adapt part of the program ORTHO3D

(provided at the end of the subroutine KBOXEFF.FOR in Appendix F). XI3D.FOR is

used to compute the dimensionless sensitivity coefficients of the thermal conductivity

parameters for the HTS thermal bridge materials.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE ADAPT

C

c HP f77 version, 3-D dp Iso version - DJN

¢

c,$noextensions

C ...................................................................

C ..... STEADY CONDUCTION IN A 3D HALF I-ITS THERMAL BRIDGE .....

C with isotropic gamma
C

C ..... Dimensionless Sensitivity Coefficient Determination for the Material

C Thermal conductivity Parameters.

C Subroutine XI3D.FOR, written by Sandrine Garcia, 1994.

C ......................................................................

INCLUDE 'common3d.f

DIMENSION Xsem(NI)

DIMENSION TI(NI),T2(NI)

DIMENSION T(NI,NJ,NK)

EQUIVALENCE (F(1,1,1,1),T(1,1,1))

ENTRY GRID

C

HEADER='HALF BSCCO/FSI - L= 152.4mm - XF1 influence'
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PRINTF='X'

C

c set geometric dimensions
rL = 0.1524<10

cff there is a buffer layer (the substrate is FSI)
thk2=O.0000003d0

c if there is no buffer layer
ccc th_ = O.OdO

rlsuperc = 0.003048d0
el = 0.0001524d0

e2 = 0.0000508d0

a = 0.003048d0

C

c zoned grid method

c set x, y and z zones
NZX=I

XZONE(1) = rL

NCVX(1) = 100

C

NZY=2

YZONE(1) = a

NCVY(1) = 4

YZONE(2) = rlsuperc/2.d0

NCVY(2) = 3

C

ccc NZZ= 2

c ff the substrate is FSI, add I CV for the buffer layer
NZZ= 3

ZZONE(1) = el

NCVZO) = 3
c if there is no buffer layer

ccc ZZONE(2) = e2

ccc NCVZ(2) = 2

c if there is a buffer layer
ZZONE(2) = th_

NCVZ(2) = 1

ZZONE(3) = e2

NCVZ(3) = 2

C

CALL ZGRID

C

c setconvergence parameter

epsi= l.d-5

c set maximum number of outer iterations

LAST = 50

c set minimum number of outer iterations

ITRMIN =8
C

c set thermal conductivity coefficients

Bgl = 0.3558d0

Bg2 = 0.07173d0

Bg3 = 0.01066d0

Bg4 = -3.706d-4

Bg5 = 4.814d-6

Bg6 = -2.839d-8
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C

C

C

C

C

Bg7 = 6.37d-ll

Byl = 0.4464d0

By2 = -0.002426d0

By3 = 9.229d-4

By4 = -2.793d-5

By5 = 3.772d-7

By6 = -2.395d-9

By7 = 5.839d-12

Bfl = 0.01565d0

Bf2 = 0.002761d0

Bf3 = 1.561d-4

Bf4 = -3.076d-6

Bf5 = 3.403d-8

Bf6 = -2.009d-10

Bf7 = 4.826d-13

Bzl = -0.2045d0

Bz2 = 0.1159d0

Bz3 = -O.001041dO

Bz4 = -2.761d-5

Bz5 = 6.671d-7

Bz6 = -5.127d-9

Bz7 = 1.367d-11

Bybl = 0.1567d0

Byb2 = 0.01403d0

Byb3 = 0.007463d0

Byb4 = -2.51d-4

Byb5 = 3.437d-6

Byb6 = -2.201d-8

Byb7 = 5.45d-11

Bbsl = 0.143d0

Bbs2 = 0.05445d0

Bbs3 =-0.003517d0

Bbs4 = 1.243d-4

Bbs5 = -2.1d-6

Bbs6 = 1.665d-8

Bbs7 = -5.035d-11

C

c set input heat flux (W/m'K)

c - if the thermal bridge is YBCO/GREEN

Qyg = 2415.429d0

c - if the thermal bridge is YBCO/YSZ

Qyy = 483.237d0

c * if the thermal bridge is BSCCO/YSZ

Qby = 380.095d0

c - if the thermal bridge is YBCO/FSI

Qyf = 260.383d0
c - if the thermal bridge is BSCCO/FSI

Qbf = 157.302d0
C

dB=0.dO
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KSTOPPP=0

RETURN

ENTRY BEGIN

C

TITLE(I) =' TEMPERATURE'
KSOLVE(I)=I

KPRRCT(t)=0
KPLOT(I) =0
KSTOP--0

1TER=O

C

c modify one thermal conductivity coefficient
Bfll = Bfl*(l.d0+dB)

C

c set initial temperature (K)

DO K=l,N1

DO J=l,Ml

open(unit=3,fil_"of.100')
DO I=l,Ll

read(3,*)T(I,J,K)
ENDDO

close(3)

ENI)DO

ENDDO

C

QOUT0 = 0.D0

RETURN

ENTRY OUTPUT

C

2O

C

210

+

QIN = 0.130

QoUT = 0.D0
DO 20 J=2,M2

DO 2O K=2,N2

QIN = QIN + YCV(J)*ZCV(K)*FLUXLI(J,K,I)

QOUT = QOUT + YCV(J)*ZCV(K)*FLUXII(J,K,I)

CONTINUE

22O

+

2OO

C

C

C

C

DO 200 IUNIT=IUIjU2

IFOTER.EQ.0) WR1TE(IUN1T,210)

FORM AT(2X,TI'ER',3x,'r(L I,M2,11)',5X,'I'(LI,M2,12)',9X,'QIN',

13X,'QOUT,9X,'NTC(1)')

W RITE(IUNIT,220)ITER,T( L 1,M2, l 1 ),T(L1 ,M2,12),QIN,QOUT, NTC( l )

FORMAT(2X,I3,3X,1PE 10.4,5X, 1PEI0.4,7X,I PEI0.4,7X, IPEI2.4,

7X,I2)
CONTINUE

create a convergence criterion

IF (ITER.LTJTRMIN) RETURN

DIFF = ABS((QOUT-QOUT0)/(QOUT+SMALL))

QOUTO=QOUT
IF (DIFF.LE.epsi.OR.ITER.EQ.LAST) THEN

calculate overall energy balance
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50

4O

C

HTBAL = QIN + QOUT

EBAL = ABS(HTBAL/QIN)

DO 40 IUNIT=IU I,IU2

WR1TE(IUNIT,50)EBAL

FORMAT(/, 2X,'EB AL', 1PE 11.3 )

CONTINUE

If (Kstoppp.eq.0) then
do i= I,LI

TI(i)=T(i,M2,11)
enddo

dB=0.01d0

Kstoppp= 1

goto 13

endif

_ccccc_cccccccccccc_cccccccccccc__

c Come here to start dimensionless sensitivity coefficient calculation

open ( unit= 1,fd_'bfXfl.dat')

do i=l,Ll

T2(i) = T(i,M2,11)

c dimensionless temperatures

T2(i) = (T2(i)-TI(1))/(TI(L1)-TI(I))

Tl(i) = (TI(i)-TI(I))/(TI(LI)-TI(I))
c dimensionless coefficients

Xsens(i) = (T2(i)-Tl(i))/dB

write(1,1000)X(i),Xsens(i)

1000 format(l F12.6,3x,lPEI5.6)

enddo

close(l)
STOP 'XI determination done'

_ccccccccccc

13 KSTOP= 1

ENDIF

RETURN

Ci_i __i_i_i.l_i__.i.*.i__.i_i°i_i.____i__._.i__.i-l-l-l-i- io_-i-i-_-i-i

ENTRY PHI

C

c set conductivities

DO 300 K=2,N2

DO 300 J=2,M2

DO 300 I=2,L2

C

IF (Z(K).LE.el) THEN
c if the subsUate is the GREEN PHASE :

ccc GAM(IJ,K) = Bgl + Bg2*T(I,J,K)

ccc + + Bg3*T(I,J,K)**2

ccc + + Bg4*T(I,J,K)**3

ccc + + Bg5*T(I,J,K)**4

ccc + + Bg6*T(I,J,K)**5

ccc + + Bg7*T(LJ, K)**6

c if the subs_ate is YSZ :

ccc GAM(I,J,K) = Byl + By2*T(I,J,K)

ccc + + By3*T(I,J,K)**2

ccc + + By4*T(I,J,K)**3
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ccc + + By5*T(I,J,K)**4

ccc + + By6*T(LJ, K)**5

ccc + + By7*T(LJ, K)**6
c ff the substrate is FSI :

GAM(LJ, K) = Bfll + Bf2*T(I,J,K)

+ + Bf3*T(I,J,K)**2

+ + Bf4*T(IJ, K)**3

+ + BfS*T(I,J,K)**4
+ + Bf6*T(I,J,K)**5

+ + Bf7*T(IJ, K)**6
ELSE

C

C

c

C

IF (Z(K).GT.el.AND.Y(J).LT.a) GAM(I,J,K) = O.dO

ff there is a buffer layer (the substrate is FSI)

IF (Z(K).GT.e I.AND.Z(K).LE.(e 1+thk2).AND.

+ Y(J).GE.a) THEN

GAM(I,J,K) = Bzl + Bz2*T(LJ,K)

+ + Bz3*T(IJ,K)**2

+ + Bz4*T(IJ,K)**3

+ + BzS*T(IJ,K)**4
+ + Bz6*T(IJ,K)**5

+ + Bz7*T(IJ,K)**6
ENDIF

IF (Z(K).GT.(e 1+thk2).AND.Z(K).LE.(el +thk2+e2).AND.

+ Y(J).GE.a) THEN

c if the superconductor is YBCO :

ccc GAM(I,J,K) = Bybl + Byb2*T(I,J,K)

ccc + + Byb3*T(LJ,K)**2

ccc + + Byb4*T(LJ,K)**3

ccc + + Byb5*T(I,J,K)**4

ccc + + Byb6*T(I,J,K)**5

ccc + + Byb7*T(I,J,K)**6

c if the superconductor is BSCCO :

GAM(I,J,K) = Bbsl + Bbs2*T(LJ, K)

+

+

+

+

+

+ Bbs3*T(LJ,K)**2

+ Bbs4*T(LJ, K)**3

+ Bbs5*T(LJ, K)**4

+ Bbs6*T(I,J,K)**5
+ Bbs7*T(I,J,K)**6

ENDIF

ENDIF

300 CONTINUE

C

c set boundary conditions

DO 310 K=2,N2

IX) 310 J=2,M2

K.BCLI(J,K) = 2
c - for the substrate

IF (Z(K).LE.el) THEN

FLXCLI(J,K) = Qbf

ELSE

C

C - if there is a buffer layer
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C

C

310

C

32O

C

330

C

IF (Y(J).GE.a.AND.Z(K).GT.e1.ANDI(K).LE.

(el+thk2)) THEN

PlaXCLI(J,K) = Qbf

ENDIF

- for the superconductor
IF (y( J).GE.a.ANDI(K).GT.(e 1+thk2).AND.Z(K).LE.

(el +thk2+e2)) THEN
FLXCLI(J,K) = Qbf

ENDIF

ENDIF

CONTINUE

DO 320 K=2,N2

DO 320 I=2,L2

KBCJI(I,K)=2

KBCMI(I,K)=2
CONTINUE

DO 330 J=2,M2
DO 330 I=2,L2

KBCKI(I,J)=2

KBCNI(I,J)=2
CONTINUE

RETURN

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
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Appendix J

The Fortran Program XIEFF.FOR

This program, XIEFF.FOR, is used to compute the dimensionless sensitivity

coefficients of the effective thermal conductivity parameters for the HTS thermal bridges.

This program was written by Sandrine Garcia, 1994.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

Program XIEFF
C

integer Np, max,i,Kj

double precision al,z

double precision B(4),Bi(4),X(102).TI(102),T2(102),XI(102,4),

+ T22(102),TI 1(102)

C

COMMON/BCOEF/B

COMMON/BCOEFI/Bi

COMMON/LENGTH/X

C

c Np is the number of parameters to study

Np=4

c max is the number of points
max = 102

c def'me the position and the Bcoef vectors

call init(max)

C

c solve for T(x) using the nominal values for the parameters
c use the bisection method

TI(1) = 4.d0
al = 4.dO

do i=2,max

z = X(i)

call dichot(z,al)
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C

Tl(i) = al

write(*,'(" TI: i,Tl ",D,3x,Fl2.6)')i,Tl(i)

enddo

open(unit= 1,file='ygeff:l')

do i= 1,max

write(l,*)Tl(i)
euddo

close(1)

C

c startsensitivitystudy

clB= 0.01d0

open(unit=2,file='ygXeff.dat')

c Rerateon Np, the number of parametersto study

do 20 Kj=I,Np

C

c modify B(Kj)

B(Kj) = B(Kj)*(I.d0+dB)

write(2,'CB:",4EI2.6)')B(1),B(2),B(3),B(4)

C

c solveforT2 (includingthe influenceof dB)

T2(I) = 4.d0

al = 4.d0

do i=2,max

z = X(i)

call dichot(z,al)

T2(i) = al
enddo

C

C reinitialize B(Kj)

B(Kj) = Bi(Kj)
C

c study XB(Kj)

do i=l,max
c dimensionlessT

T22(i)= (T2(i)-Tl(1))/(Tl(max)-Tl(1))

Tl l(i)= Crl (i)-Tl(l))/(Tl(max)-Tl(1))

c dimensionless sensitivity coefficient

XI(i,Kj) = (T22(i)-TI l(i))/dB

write(2,1000)X(i),XI(i, Kj)

enddo

1000 format(lFI 2.6,3x,IE12.6)

20 continue

close(2)

STOP 'Xideterminationdone'

END

subroutine init(max)

C

C

integer max,i

double precision L

double precision B(4),Bi(4),X(102)

COMMON/BCOEF/B

COMMON/BCOEFI/Bi
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COMMON/LENGTH/X

C

c def'me position vector

c (so that it is equivalent to 100 CV in the x-direction in Conduct)
L = 0.1524d0

X(D--0.d0

X(2)=L/(100.d0*2.d0)
do i=3,(max-l)

X(i) = X(i-1)+L/100.d0

enddo

X(max) = L
C

c define nominal valu©s for the parameters studied

c if the thermal bridge is BSCCO/FSI

ccc Bi( 1) = 4.094868d-2

ccc Bi(2) = 4.611036d-3

ccc Bi(3) = 6.98767d-5

ccc Bi(4) = -5.675586d-7

c if the thermal bridge is YBCO/FSI

ccc Bi(1) = -4.74875d-2
ccc Bi(2) = 2.008335d-2

ccc Bi(3) = -1.37505310d-4

ccc Bi(4) = 2.504543d-7

c if the thermal bridg e is BSCCO/YSZ

ccc Bi(1) = 3.677809d-1

ccc Bi(2) = 1.274091d-2

ccc Bi(3) = -6.4d-5

ccc Bi(4) = 3.722766d-9

c if the thermal bridge is YBCO/YSZ

ccc Bi(l) = 2.792925d- 1

ccc Bi(2) = 2.82224d-2

co: Bi(3) = -2.71507d-4

ccc Bi(4) = 8.222185d-7

c if the thermal bridge is YBCO/GREEN

Bi(l) = -7.614828d-1

Bi(2) = 2.915835d-1

Bi(3) = -3.604426d-3

Bi(4) = 1.083079d-5

C

c

C

initialize the parameters

B(I) = Bi(1)

B(2) = Bi(2)

B(3) = Bi(3)

B(4) = Bi(4)

C

integer Kcount

double precision x.al.a2.c,qin, K.Qal.Qa2,Qc,epsi.P

double precision B(4)

COMMON/BCOEF/B
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C

c define input heat flux

ccc qin = 157.302d0

ccc qin = 260.383d0

ccc qin = 380.095d0

ccc qin = 483.237d0

qin = 2415.429d0
C
c define 2rid limit b of the interval studied [a,b] for the T range

a2 = 100.dO

c define constant K in the T solution

K = 4.d0*B(l)+8.d0*B(2)+4.d0**3/3.d0*B(3)+64.d0*B(4)

C

c solve for T(x) using the bisection method
Kcount = 0

10 Kcount = Kcount+l

Qal = P(al)-(qin*x+K)

Qa2 = P(a2)-(qin*x+K)

c = (al+a2)/2.d0

Qc = P(c)-(qin*x+K)
if ((Qal*Qc).lt.0.d0) then

a2=c

else

al=c

endif

C

C

epsi = (abs(Qal)+abs(Qa2))/2.d0

if (KcounLgt.1000) STOP 'Kcount greater than 1000'

if (epsi.gt.ld-4) go to 10

return

end

double precision function P(T)
C

double precision T

double precision B(4)
C

COMMON/BCOEF/B

C

p = B(1)*T+B(2)/2.d0*T**2+B(3)/3.d0*T**3+B(4)I4.d0*T**4

return

end
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Appendix K

The Fortran Program KEFF.FOR

This program, KEFF.FOR, is used to compute the true estimates of the constant

effective thermal conductivities of the HTS thermal bridges. This program was written

by Sandrine Garcia, 1994.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

Program KEFF
C

integer i

double precision ratiosup,ratiosub,ratiobl

double precision B(7),Bsup(7),Bsub(7),Bbl(7),T,keff,

+ truekl,truekx,TL,dT,Tl (102)

C

c set the surface ratios

Asup = 0.1548384d0
Asub = 1.3935456d0

c - ff there is no buffer layer
ccc Amt = 1.54838406d0

c - ff there is a buffer layer
Abl = 0.0009144d0

Atot = 1.5492984d0

C

ratiosup = Asup/Atot

ratiosub = Asub/Atot

c if there is a buffer layer
ratiobl = Abl/Atot

C

c set the material thermal conductivity coefficients

c if the substrate is the GREEN Phase

ccc Bsub(l) = 0.3558d0

ccc Bsub(2) = 0.07173d0
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ccc Bsub(3) = 0.01066d0
ccc Bsub(4) = -3.706d-4

ccc Bsub(5) = 4.814d-6

ccc Bsub(6) = -2.839d-8

ccc Bsub(7) = 6.37d-11

C

c if the subs_ate is YSZ

ccc Bsub(1) = 0.4464d0
ccc Bsub(2) = -0.002426d0

ccc Bsub(3) = 9.229d-4

ccc Bsub(4) = -2.793d-5

ccc Bsub(5) = 3.772d-7

ccc Bsub(6) = -2.395d-9
ccc Bsub(7) = 5.839d-12

C

C ff the subsl_atc is FSI

Bsub(l) = 0.01565d0

Bsub(2) = 0.002761d0

Bsub(3) = 1.561d-4

Bsub(4) = -3.076d-6

Bsub(5) = 3.403d-8

Bsub(6) = -2.009d-10
Bsub(7) = 4.826d-13

c for FSI add the buffer layer

Bbl(1) = -0.2045d0

Bbl(2) = 0.1159d0

Bbl(3) = -0.001041d0

Bbl(4) = -2.761d-5

Bbl(5) = 6.671d-7

Bbl(6) = -5.127d-9

Bbi(7) = 1.367d-11

C

c if the superconductor is YBCO

ccc Bsup(l) = 0.1567d0

ccc Bsup(2) = 0.01403d0

ccc Bsup(3) = 0.007463d0

ccc Bsup(4) = -2.51d-4

ccc Bsup(5) = 3.437d-6

ccc Bsup(6) = -2.201d-8

ccc Bsup(7) = 5.45d-ll
C

if the superconductor is BSCCO

Bsup(1) = 0.143d0

Bsup(2) -- 0.05445d0

Bsup(3) = -0.003517d0

Bsup(4) = 1.243d-4

Bsup(5) = -2.1d-6

Bsup(6) = 1.665d-8

Bsup(7) = -5.035d- 11
C

c DETERMINATION OF THE COEFFICIENT OF Keffe_tive

c if there is no buffer layer
ccc B(I) = ratiosup*Bsup(l) + ratiosub*Bsub(l)

ccc B(2) = ratiosup*Bsup(2) + ratiosub*Bsub(2)

ccc B(3) = ratiosup*Bsup(3) + ratiosub*Bsub(3)
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ccc B(4) = ratiosup*Bsup(4) + ratiosub*Bsub(4)

ccc B(5) = ratiosup*Bsup(5) + ratiosub*Bsub(5)

ccc B(6) = ratiosup*Bsup(6) + ratiosub*Bsub(6)

ccc B(7) = ratiosup*Bsup(7) + ratiosub*Bsub(7)
C

C

B(2) =

B(3)=
B(4)=
B(5)=
B(6) =

B(7) =

C

if there is a buffer layer

B(I) = ratiosup*Bsup(1) + ratiobl*Bbl(l) + ratiosub*Bsub(l)
ratiosup*Bsup(2) + ratiobl*Bbl(2) + ratiosub*Bsub(2)

ratiosup*Bsup(3) + ratiobl*Bbl(3) + ratiosub*Bsub(3)

ratiosup*Bsup(4) + ratiobl*Bbl(4) + ratiosub*Bsub(4)
ratiosup*Bsup(5) + ratiobl*Bbl(5) + ratiosub*Bsub(5)

ratiosup*Bsup(6) + ratiobl*Bbi(6) + ratiosub*Bsub(6)

ratiosup*Bsup(7) + ratiobl*Bbl(7) + ratiosub*Bsub(7)

c record keff data

ccc open(unit= 1,file='kbf.eW)
ccc T=0.d0

ccc do i=l,lO1

ccc keff = B(1)+B(2)*T+B(3)*T**2+B(4)*T**3

ccc + +B(5)*T**4+B(6)*T**5+B(7)*T**6

ccc write(1,*)T, keff
ccc T = T+l.d0

ccc enddo

CCC close(l)

C

c reads exact temperatures obtained from ORTHO3D

open(unit--99,file='bf. 100')
do i=1,102

read(99,*)Tl(i)
enddo

close(99)

C

c determine the area under the keff curve for the range of temperature

c investigated [4-80K]
c set T interval to discretize the curve

dT=O.OOOOldO

c set initial T and initialize area to zero

T--4.d0

area=0.d0

sumarea--O.d0

sumbeta--0.d0

c determine the true estimate tnmld (average value of keff on [To,TL]

do while (T.Ie.TI(102))

i=i+l

keff = B(1)+B(2)*T+B(3)*T**2+B(4)*T**3

+ +B(5)*T**4+B(6)*T**5+B(7)*T**6
area = area+keff*dT

T = T+dT

enddo

truekl = area/(Tl (102)-TI (1))

initialize area, sumbeta and sumarea to zero

area=0.d0

sumbeta--0.d0

sumarea--0.d0
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c determine the true estimate truekx

do i=l,101

keff = B(I)+B(2)*TI(i+I)+B(3)*TI(i+I)**2+B(4)*TI(i+1)**3

+ +B(5)*TI(i+I)**4+B(6)*TI(i+l)**5+B(7)*TI(i+I)**6

area = area+keff*(Tl(i+l)-Tl(i))

suinarea = sumare&+area

betax = area/(Tl(i+l)-Tl(1))

write(*,*)betax
sumbeta = sumbeta+area**2/(Tl(i+l)-Tl(1))

enddo

truekx = sumbeta/sumarea

C

write(*,*)'truekl = ',trueld

write(*,*)'Iruekx = ',truekx

stop
end
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